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Motivations

Lattice Boltzmann Method:

= Adapted to a wide range of physical simulations
= Intrinsic scalability, well suited for HPC

= Can handle very complex (moving) geometry

Large Eddy Simulation:

= HEnable cost-effective highly turbulent flow simulations

= Popular in commercial CFD softwares

Study of a Large Eddy Simulation within the

Lattice Boltzmann framework
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Introduction to LBM

LBM Equation with a relaxation time 7 = 7 fixed (LBGK)

fi(X + CAtL t+ At) — fi(X, t) = —— [f(X, 1) — (X, 1)]
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Introduction to LBM

LBM Equation with a relaxation time 7 = 7 fixed

— — — 1 — —
fi(X + CAtL t+ At) — fi(X, t) = —— [f(X, 1) — (X, 1)]
0

Macroscopic quantities: Density p = > . fi Momentum p@ = ), fiC;
Chapman-Enskog expansion Ma = ’UJRC_JyS

v =c?(t —0.5)At Kn=2

Weakly compressible Navier-Stokes with viscosity v = 1/, fixed

Oi(pui) + 0i(puiu;) = —0ip + O;pv (Oju; + Oiu;) + (D(Mg) - O(Kﬁ)

We want to use LBM to simulate highly turbulent flows
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Simulation of 2D Forced Turbulence

&) = a(luP) €n(t) = (u-f)

Kr = Eint &() = wW|Vul’)

Re = - L
inV
High Re
Inverse Casade Direct Cascade * Extended direct cascade
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(Implicit) Large Eddy Simulation (LES)

* Direct Num. Sim. (DNS)

CR;QSORC;%IE: All scales of the flow are

% solved (expensive)

» Large Eddy Sim. (LES)
ﬁ All scales up to a cut-oft
@ are resolved, a SGS is used

@ to model small scales effect

Good SGS?

= Small scales dissipation

N

et = Allows intermittent transfer of

N energy to grid scales (backscatter)
Sub-Grid Scale (SGS):

Not captured by the grid

Needs to be modeled No SGS =>small scale instabilities
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Entropic Lattice Boltzmann Method (ELBM)

With LBM Instabilities arise as 70 — 0.0 (vp — 0, Re — 00) :

Can we get rid of those unstabilities?

= Non-linear stabilization of LBM has been linked to the
existence of a H-functional acting as a Lyapunov functional

= Entropic LBM equips a H-theorem by locally adapting
T =Tefr(Z, 1) = K(fi )70 [Karlin et. al., EPL, 1999
= ELBM is unconditionally stable and recover N-S with
V= Vesf(T,t) = A (Tesf(Z, 1) — 0.5)At
= vy + A19(K — 1)At = vg + v (7, 1)
v (T,t) = Ao (K — 1) At K(x,t) = K({fi(Z,1)})

Non-linear dependency
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ELBM: macroscopic formulation of the SGS

= Assuming K ~ 1, one can derive an approximation of v;(Z,t)

. . Malaspinas & Sagaut, PRE, 2008
using Chapman-Enskog expansion: | P ¢ |

where vM(Z,t) = —4§§ TS At? S%‘i"giw X —%
Sij = %(@-uj + 0;u;) NOT DEFINITE-POSITIVE
Change sign (allows backscatter events)
Scale as |S| like the Smagorinsky SGS [Smagorinsky, 1963]
v (%, t) = C°v/SprSox DEFINITE-POSITIVE

Objectives of this work:

e Is the Malaspinas approximation valid? (check numerically)

 Artifact of the stabilization or SGS stemming from Kinetic theory?
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Superposed energy spectra of the simulations
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Numerical check of Malaspinas formulation ng
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Under-resolved case
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Optimally-resolved case
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Over-resolved case
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Malaspinas
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Conclusions

= Conducted 2D Homogeneous Isotropic Turbulence simulations at
increasing Reynolds number

= ELBM enables an extension of the inertial range
= The implicit turbulence models gets increasingly active with Re
= Malaspinas model is in fair agreement but fails to capture the

skewness of the actual turbulent viscosity

Future work

Is ELBM a mere stabilization or an implicit physical model
of the sub-grid scales stemming from kinetic theory?

= Development of a tool to check numerically the balance of kinetic energy
and enstrophy across scales

* Systematic statistical analysis of hydrodynamics recovery for Entropic
LBM with the implicit SGS included
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Statistics of hydrodynamic recovery at scale L

Averaged kinetic energy balance equation for v = v (X, t) = 1y +
puUiU;
8f< o >V
= —(uidip), — vo(p (Ojui + Oiy) Ojui) , + 1o (0;pui (Fui + divy) ),
uiui
_ <8J,-p : u;)v + <U;F;>V — <z/;p (Ojui + oiuj) quf>v + <8jz/rpu; (Jjui + Oiuj) >v

For a scale L, we calculate each
term of the balance eq. For
random sub-volumes of size

V = L X L and evaluate the
hydrodynamic recovery
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