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Motivations

Simulations of highly turbulent flows is challenging

Turbulence is a multi-scale phenomenon Re = %
inV

Direct Numerical Simulations requires all scales to be solved (expensive)

Lattice Boltzmann Method:
Intrinsic scalability, well suited for HPC

Adapted to a wide range of physical simulations

Can handle very complex (moving) geometry

Large Eddy Simulation:
Enable cost-effective highly turbulent flow simulations

Popular in commercial CFD softwares
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Large Eddy Simulation (LES)

gggliﬁe: = Large Eddy Simulations
\ All scales up to a cut-off

are resolved, a SGS is used
to model small scales effect

Y

Captures small scales dissipation

Extends the inertial range of scales

Models intermittent transfer of energy
to resolved scales (backscatter)

@ Good SGS?
MN\ "

Sub-Grid Scale (SGS):
Not captured by the grid

Needs to be modeled

No SGS = small scale instabilities
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LES with eddy viscosity SGS model

(Navier Stokes eq.) 0w+ (v-V)v=—-Vp+ V- 2148

Filtered velocity field

v(x,t) = / dy G(|lx —yl|) v Z G(k e'k®
Q
(Filtered N-Seq.) ;v + (v-V)v = —Vp+ V- 2198 — V - Thnodel (U, D)

Eddy viscosity model

Trmodel(0,0) = 2008 = O+ (V- V)v = =Vp+ V- 2(vg + ov.)S

Example: Smagorinsky SGS [Smagorinsky, 1963

5”@ — CS\/SQKZSQK,

DEFINITE-POSITIVE -~ PURELY DISSIPATIVE
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Introduction to LBM

LBM Equation with a relaxation time 7 = 7; fixed (LBGK)

fi(X + CAtL t+ At) — fi(X, t) = —— [f(X, 1) — (X, 1)]

1
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v

Macroscopic quantities: Density p =) _.fi Momentum pt = ). fiC;
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Introduction to LBM

LBM Equation with a relaxation time 7 = 7; fixed (LBGK)

— — — 1 — —
fi(X + CAtL t+ At) — fi(X, t) = —— [f(X, 1) — (X, 1)]
0

Macroscopic quantities: Density p = > . fi Momentum p@ = ), fiC;
Chapman-Enskog expansion Ma = ’UJRC_JyS

v =c?(t —0.5)At Kn=2

Weakly compressible Navier-Stokes with viscosity v = 1/, fixed

Oi(pui) + 0i(puiu;) = —0ip + O;pv (Oju; + Oiu;) + (D(Mg) - O(Kﬁ)

We want to use LBM to simulate highly turbulent flows
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Simulation of turbulent flows with LBM

= At a fixed resolution, the Reynolds number reachable in practice is
limited:

» Low Mach number approximation

Re — Urus upms < 1077
Kinlo = Instabilities

70 — 0.5 1.e. vg — 0
v =c2(t —0.5)At

Can we get rid of those instabilities?

= Non-linear stabilization of LBM has been linked to the
existence of a H-functional acting as a Lyapunov functional

How can LBM equip a H-theorem?
[Karlin et. al., 1999]
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Entropic Lattice Boltzmann Method (ELBM)

= ELBM equation adapts the relaxation time locally Teff = a—lﬁ

ELBM Equation [Karlin et al., 1999]

filx+ci,t+1)=fi(x, t)+ af [£7(x,t) — fi(x,1)]

With g = % and o = «a(Z,t) a free parameter

= ELBM equips a discrete H-theorem with
H (F) = X0 filog ()

= (Calculating @ locally by solving the entropic step eq.
H(f)=H(f —a(f —f))

= Unconditionally stable s O — 2, 1.6. Teg — Top Whenever
(apparently) the simulation is resolved
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ELBM: implicit eddy viscosity SGS model

1
Veff = C?(Teﬂ-‘ — O.5)At Teft = 43
» ELBM recovers N-S with

v =1p + 21 (2=2) At

«

Measured ovM = Aro(=2) At

. Assuming « & 2, one can derive an approximation of ovM (7, )
[Malaspinas & Sagaut, PRE, 2008]

4c2 SorS.~S Tr(S3
St = — LB A2 2025200 o r(S )

Approximated 3 S S Tr(57)

Scale as |S| like the Smagorinsky SGS  S;; = 2(d;u; + 9;u;)

NOT DEFINITE-POSITIVE -~ ALLOWS BACKSCATTER
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Objectives

1) Is this implicit SGS an artifact of the
stabilization or a physical SGS stemming from
Kinetic theory?

2) Numerically check if the approximated eddy
viscosity is valid.
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Superposed energy spectra of the simulations

Forcing at k = 1 to 2
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1) Physical relevance of the implicit SGS

Energy balance

LHSY =0i("5),

= —(9; (puzu,,, ) yv = (wadip)y + (uibi)y,
— (10 p (D5us + Oyuy) Djus),, + (95 (o pui (95us + yuy)) )y,
— <5ye (Oju; + O;u;) O; uz>v + <3 (0ve pu; (Oju; + Oiuy)) >
= RHS{

Balancing error
Vy =LXxLXL

|RHS, (t)—LHSY (w|

Ly (max, <E(t)>)

[Tauzin et al., C&F, 2018]

58, (1) =




Evolution of the balance over a sub-volume

critically-resolved LBGK simulaion L=128
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Evolution of the balance over a sub-volume
critically-resolved ELBM simulaion L=128
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Statistical analysis of the energy balancing error

For a sub-volume size L., we calculate the balancing error
for 10,000 random sub-volumes of size Vi, = L X L X L

|RHSy, (t)—LHS{,

Mean of 677 (t) \ (%t)’ for all subvolume V7, against L
S Ly (maxt <E(t)>> | -
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(Tauzin et al., In preparation]
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2) Numerical check of Approximated viscosity
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Conclusions
= 3D Homogeneous Isotropic Turbulence simulations at increasing Re
« BELBM implicit SGS enables an extension of the inertial range
= The implicit turbulence models is inactive when the simulations is

fully-resolved and gets increasingly active with Re

= Numerical check of the balance of kinetic energy and enstrophy on

sub-volumes of the computational domain reveals numerical
dissipation

ELBM was shown to maintain accuracy up to Reynolds 20 times
larger than the one of the critical LBGK

= Approximated viscosity model is in fair agreement only when the
simulations is still well resolved

= Need to check higher order hydrodynamic correlations of ELBM
simulations and Pseudo-Spectral LES with approximated SGS

(0,v?) =~ E(k) LOCAL (9,v*) NON-LOCAL  [Tauzin et al.,, In prep.]
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Thank you for your attention
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