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Motivations

Lattice Boltzmann Method:

= Adapted to a wide range of physical simulations
= Intrinsic scalability, well suited for HPC

= Can handle very complex (moving) geometry

Large Eddy Simulation:

= HEnable cost-effective highly turbulent flow simulations

= Popular in commercial CFD softwares

Study of a Large Eddy Simulation within the

Lattice Boltzmann framework
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2D Forced Homogeneous Isotropic Turbulence

Ein(t) = (u-f) __ Urws
Re = —
L e, () = V(|Vll|2) High Reynolds

E(k)  BEixtended direct cascade

 Decreased smallest scales

* Direct Num. Sim. (DNS)
Inverse Casade Direct Cascade
e [ All scales Of the ﬂOW are
' ' solved (expensive)
[Large scale Forcing Small Scale
Dissipation Injection Dissipation
k. k
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(Implicit) Large Eddy Simulation (LES)

Grid scale: .
Resolved Large Eddy Sim. (LES)

All scales up to a cut-off
are resolved, a SGS 1s used

to model small scales effect
S

)
Good SGS?

= Captures small scales dissipation
= Extends the inertial range of scales
- n

Models intermittent transfer of energy

N to resolved scales (backscatter)

Sub-Grid Scale (SGS):

Not captured by the grid
Needs to be modeled
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No SGS => small scale instabilities



Eddy viscosity SGS model

(Navier Stokes eq.) 0w+ (v-V)v=—-Vp+ V- 2148

Filtered velocity field

v(x,t) = / dy G(|lx —yl|) v Z G(k e'k®
Q
(Filtered N-Seq.) ;v + (v-V)v = —Vp+ V- 2198 — V - Thnodel (U, D)

Eddy viscosity model

Trmodel(0,0) = 2008 = O+ (V- V)v = =Vp+ V- 2(vg + ov.)S

Example: Smagorinsky SGS [Smagorinsky, 1963]
5”@ — CS\/SQKZSQK,

DEFINITE-POSITIVE -~ PURELY DISSIPATIVE
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Introduction to LBM

LBM Equation with a relaxation time 7 = 7; fixed (LBGK)

fi(X + CAtL t+ At) — fi(X, t) = —— [f(X, 1) — (X, 1)]

1
70

Macroscopic quantities:Density p =) . fi Momentum pi =), fiC;

Particle
LBM Navier-Stokes
Methods
— — — -
L SRR TN [ 2o = >
.. T G G
s‘ A e ° E)
< 4 - e
\ » o “Q - /
* o IS L y o S -
’ t. l .t. . ‘ \ / \ . _*_ - ‘/-\
particies position 4 istribution functions |
_.-- and momentum e[ A .--1 | . | |
microscopic mesoscopic macroscopic

scale scale scale




Simulation of turbulent flows with LBM

= At a fixed resolution, the Reynolds number reachable in

practice is limited:

Re = Yrums
kinVO

= Low Mach number approximation

upms < 1071

= [nstabilities
70 — 0.5 1.e. vg — 0
v=—c2(t —0.5)At

Can we get rid of those instabilities?

= Non-linear stabilization of LBM has been linked to the
existence of a H-functional acting as a Lyapunov functional

How can LBM equip a H-theorem? [Karlin et. al., 1999]
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Entropic Lattice Boltzmann Method (ELBM)

= BELBM equation adapts the relaxation time locally 7eff = 0%5

ELBM Equation [Karlin et al., 1999]

filx+ci,t+1)=fi(x, t)+ af [£7(x,t) — fi(x,1)]

With S = % and o = a(z,t) a free parameter

= BELBM equips a discrete H-theorem with
H (F) = X0 filog ()

= Defining the equilibrium distribution as the extrema of H under
the constraints of mass and momentum conservation, we find for

D2Q9 _ _ Ci, v
o\ | 2y 1y |
$Q<p<f,t>,a<f,t>>tz-pnfjl{@ 1+ ) fﬂ s
s 3cg
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(L]
-

BM)

Entropic Lattice Boltzmann Method (:
= Setting """ (a) = f — o (f — £°9), we have

ELBM Equation [Karlin et al., 1999]

fi(x +ci,t+1) = (1= B) filx, t) + B F(x, 1)

with 0< (8 <1(0.5<7<+00)
* (Calculating « locally by solving the entropic step eq.

H (f) — H (fmirror (Oé))

[Karlin et. al., EPL, 1999]
f
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=
-

BM: implicit eddy viscosity SGS model

v =c%(t —0.5)At
 ELBM is (apparently) unconditionally stable and recover N-S
with V = 1) -+ C?T()(% — 1)At

Measured ovt = c21o(§ — 1)At

» Assumingo = 2 |, one can derive an approximation of Véw (7, 1)
[Malaspinas & Sagaut, PRE, 2008]

4c2 SorS.~S Tr(S3
St = — LB A2 2025200 o r(S )

Approximated 3 S S Tr(57)

Scale as |S| like the Smagorinsky SGS Sij = 5 (Diuj + Ojuy)

NOT DEFINITE-POSITIVE .~ ALLOWS BACKSCATTER
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Objectives

1) Numerically check if the approximated
eddy viscosity is valid.

2) Is this implicit SGS an artifact of the
stabilization or a physical SGS stemming from
Kinetic theory?

g.tauzinChpc-leap.eu HPC-LEAP Conference July 11, 2018



Superposed energy spectra of the simulations

102} ko Periodic 256x256 grid |
10 g
10| Ma ~ 0.05
- B A
< 10%f . \\
e *—x LBM, Re=60 S :
10" 6— ELBM, Re=60 \ -
||=® ELBM, Re=240 ) :
10 oo ELBM, Re=1200 \ '
10141 ELBM, Re=6000 N
&—a  ELBM, Re=12000
1071 - . —
10° 101 102
k

over-resolved

Re = 60

optimally-resolved

Re = 1200

under-resolved

Re = 12000
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Vorticity Approximated OV2 /Uy Measured OV /1
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Numerical check of Malaspinas formulation

Re =60 Re=1200 Re=12000

10° 10 10% 107 10° 10 107 10
N T EE | N )
. —— 7.5e-1 . . . 8.0el . . .
r=0.89 | Lameuae r=0.54 r=0.07

7.5e-4 LT = 3.8e-1)

over — resolved ‘ Loptimally — resolved ‘ L under — resolved
10° 10°

1.5e-3

4.0elt

0.0e0¢ T Yoo 4 0.0e0f: 0.0e0 2
C e .. e ¥

5V§/V0

{ -3.8e-1} -4.0elt

v Jvg v Jvg v Jvg
Measured eddy viscosity Approximated eddy viscosity

c2 r 3
Sv(@,1) = ro(§ — DAL WAE L) = —TF 1AL 1
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Over-resolved case

10°
S Measured
107 ‘ &-< Approx.
10°*
[
~ -3
A4 10
10
-5
—0.002 0.002
Ve /1
Measured eddy viscosity Approximated eddy viscosity
. A/ = 4c§ 2 o0 Tr(S°
UM (T, t) = Aro(& — DAL v Et) = =515 AP T
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Optimally-resolved case

10° .
G—© Measured
1074 i G-© Approx.
10|
—
- -3
A~ 10
107
107 " | . A
-1.0 —0.5 0.0 0.5 1.0
Ve/vVO
Measured eddy viscosity Approximated eddy viscosity
— g T
M (1) = (g — DAL VA = — AR T
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Conclusions

= Conducted 2D Homogeneous Isotropic Turbulence simulations at
increasing Reynolds number

= ELBM enables an extension of the inertial range
= The implicit turbulence models gets increasingly active with Re
= Approximated viscosity model is in fair agreement but fails to capture the

skewness of the actual turbulent viscosity

Not covered in this talk

Is ELBM a mere stabilization or an implicit physical model
of the sub-grid scales stemming from kinetic theory?

= Development of a tool to check numerically the balance of kinetic energy

and enstrophy on sub-volumes of the computational domain

[Tauzin et al., C&F, 2018]
» Systematic statistical analysis of hydrodynamics recovery for Entropic

LBM with the implicit SGS included [Tauzin et al., In preparation]
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Thank you for your attention
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Established by the European Commission

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No’ 642069
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