Spatiotemporal dynamics of turbulent flows under the presence of waves

Patricio Clark di Leoni Universita di Roma Tor Vergata

Wave Turbulence and Extreme Events
Udine, Italia
June 18, 2018

The classical picture of turbulence

The analysis of turbulent flows often focuses only on spatial properties (in simulations) or only on temporal properties (in experiments).

The spatiotemporal nature of turbulence

- Turbulence is a spatiotemporal phenomenon.
- Its study should take this into account.
- Of crucial importance when studying flows where there are waves present.

Turbulent flows where waves are present

Internal waves in the atmosphere

Surface gravity waves

Kelvin waves in superfluids [Video from Lathrop's lab]

How can we differentiate the impact of waves from that of other structures?

Turbulence fundamentals Nonlinear triads

$$\frac{\partial \mathbf{u}}{\partial t} + \nu \nabla^2 \mathbf{u} = -(\mathbf{u} \cdot \nabla) \mathbf{u} - \nabla p + \mathbf{f}$$
 Fourier transform
$$\left(\frac{\partial}{\partial t} + \nu k^2\right) \mathbf{u_k} = -i \mathbb{P_k} \underbrace{\int (\mathbf{u_{k-q}} \cdot \mathbf{q}) \mathbf{u_q} d\mathbf{q}}_{\mathbf{triad}} + \mathbf{f_k}$$

$$\underbrace{\mathbf{v_{k-q}} \cdot \mathbf{q}}_{\mathbf{k}} = \mathbf{v_{k-q}}_{\mathbf{k}}$$

Turbulence fundamentals Flows with waves and resonant triads

Given the dispersion relation $\omega(\mathbf{k})$ the spatiotemporal structure of waves is defined

We can propose a multiscale expansion of the form $\mathbf{u}_{\mathbf{k}}(t) = \mathbf{U}_{\mathbf{k}}(t)e^{i\omega(\mathbf{k})t}$

$$\left(\frac{\partial}{\partial t} + \nu k^2\right) \mathbf{U}_{\mathbf{k}} = -i \mathbb{P}_{\mathbf{k}} \int (\mathbf{U}_{\mathbf{p}} \cdot \mathbf{q}) \mathbf{U}_{\mathbf{q}} e^{i[\omega(\mathbf{p}) + \omega(\mathbf{q}) - \omega(\mathbf{k})]t} d\mathbf{q} + \mathbf{f}_{\mathbf{k}}$$

This way only resonant triads survive

$$\mathbf{k} = \mathbf{p} + \mathbf{q}$$
$$\omega(\mathbf{k}) = \omega(\mathbf{p}) + \omega(\mathbf{q})$$

Turbulence fundamentals Time scales

Nonlinear time

$$au_{NL} \sim rac{\ell}{u}$$

Sweeping time

$$au_{sw} \sim rac{\ell}{U}$$

Wave period

$$au_{\omega} \sim rac{1}{\omega(\mathbf{k})}$$

We will analyse the relation between the different spatial and temporal scales via spatiotemporal spectra

$$E(\mathbf{k}, \omega) = \frac{1}{2} \left| \int \mathbf{u}_{\mathbf{k}}(t) e^{-i\omega t} t \right|^2$$

Problems tackled

- Surface waves
 - Experiments on gravito-capillary waves
 - Simulations of the Boussinesq model for surface waves
- Atmospheric flows
 - Rotating turbulence and stratified turbulence
 - Simulations of the Boussinesq model
- Quantum turbulence
 - Simulations of the Gross-Pitaevskii equation
- All simulations were performed using a pseudospectral method which does not introduce neither dispersion nor dissipation.

Surface waves Experimental set-up

Pattern projection profilometry [Maurel et al. (2009); Cobelli et al. (2009)]

Surface waves

Increasing the amount of energy injected creates slave modes [Clark di Leoni, Cobelli & Mininni, EPJE (2015)]

First reported by [Mordant et al, PRL (2010)]

k (1/cm)

k (1/cm)

Surface waves Simulations of the Boussinesq model

 $\omega = \frac{c_0 k}{\sqrt{1 + \frac{h_0^2 k^2}{3}}}$

Model for not-so-shallow waves

Changing the intensity of dispersion makes the system go from a wave turbulence regime to a mixed soliton and wave regime [Clark di Leoni, Cobelli & Mininni, PRE (2014)] Seen in experiments too [Hassaini & Mordant, PRF (2017)]

Atmospheric turbulence

- Understanding turbulence is important in order to develop both forecast and climate models
- We studied rotating flows and stratified flows
- In the scale of the ~1000 km rotation dominates the dynamics
- In the scale of the ~100 km stratification dominates the dynamics
- They are involed in problems such as mixing and blockage
- Three-dimensional!
- Strong interaction between vortices and waves

Rotating turbulence Introduction

Columns in rotating turbulence [Mininni et al. (2009)]

Inertial waves

$$\omega_R(\mathbf{k}) = \frac{2\Omega k_{\parallel}}{k}$$

Flow bidimensionalization due to the effect of resonant triads [Waleffe (1993)]

We performed simulations at different rotation rates Ω and quantified the presence of waves

Rotating turbulence results

Axisymmetric spatial spectra

We can see the anisotropic effects on the flow, but can be observe waves directly?

Rotating turbulence results

Spatiotemporal spectra

 k_z (número de onda vertical)

 k_z (número de onda vertical)

Energy is concentrated along the dispersion relation [Clark di Leoni et al, PoF (2014)]
Seen experimentally too [Yarom & Sharon (2014)]

Rotating turbulence Decorrelation times

$$\Gamma_{xx}(\mathbf{k},\tau) = \frac{\langle \hat{u}_x^*(\mathbf{k},t)\hat{u}_x(\mathbf{k},t+\tau)\rangle_t}{\langle \hat{u}_x^*(\mathbf{k},t)\hat{u}_x(\mathbf{k},t)\rangle_t} \quad \Rightarrow \quad \tau_d$$

When the sweeping mechanisms become faster than the waves, they start to dominate the dynamics.

Interactions between triads Motivations

Interaction between triads

Contribution functions

$$\Theta(\mathbf{k}, \mathbf{p}, \mathbf{q}, \tau) = \langle \mathbf{u}_{\mathbf{k}}^*(t') \cdot [\mathbf{u}_{\mathbf{p}}(t' + \tau) \cdot \mathbf{q}] \, \mathbf{u}_{\mathbf{q}}(t' + \tau) \rangle_{t'}$$

$$2\omega E(\mathbf{k}, \omega) = \sum_{\mathbf{p}+\mathbf{q}=\mathbf{k}} \widehat{\Theta}(\mathbf{k}, \mathbf{q}, \mathbf{p}, \omega).$$

Interaction between triads Contribution functions

Both resonant and quasi-resonant triads are important!

3D (fast) vs 2D (slow) modes

- Under strong rotation 3D and 2D get decouple [Waleffe (1993)]
- Under strong rotation an inverse cascade can form too
- This is typically thought as 2D problem
- Do 3D modes have any say in the inverse cascade?
- We removed the 2D modes in order to find out!
- [Buzzicotti, Clark Di Leoni & Biferale, arXiv (2018)]

While there is some transfer of energy backwards, a zero flux regime is formed and no inverse cascade is seen.

Quasi-resonant modes are important to couple the 2D and 3D dynamics

Stratified turbulence Introduction

Vertically sheared horizontal winds [Smith & Waleffe (2002); Rorai et al. (2014)]

Internal waves

$$\omega_S(\mathbf{k}) = \frac{Nk_{\perp}}{k}$$

$$\omega = \omega_S + \mathbf{U} \cdot \mathbf{k}$$

If U=c a critical layer is formed where waves are absorbed

Stratified turbulence results Spatio-temporal spectra

These effects were studied previously in linear models [Hines (1971); Booker & Bretherton (1967)]

But until now they have not been studied in turbulent flows [Clark di Leoni & Mininni, PRE (2015)]

Flows in nature have very large Reynolds numbers What can quantum flows tell us about classical ones? Is it possible to study the infinite Reynolds limit?

Quantum turbulence Gross-Pitaevskii equation

- All vorticity is concentrated along topological line defects
- Except along these lines, the flow can be understood as that of an ideal fluid
- There are known similarities between classical and quantum turbulence
- Vortices can sustain Kelvin waves, which are thought to generate a turbulent cascade [Lvov & Nazarenko (2010)]
- Previous studies have focused on a small number of vortices [Krstulovic (20012), Baggaely & Laurie (2014)]
- Phonons are left with the task of "dissipating" energy [Vinen & Niemela (2002), Proment et al (2009)]

Quantum turbulence Simulations of the Gross-Pitaevskii equation

We have to extract Kelvin waves out of this mess!

Similar flow configuration as that of the SHREK experiment

Quantum turbulence results Spatiotemporal spectrum of the density

Detection of Kelvin waves in a complex turbulent flow

Phonon emission was also detected

This a characteristic trait of quantum turbulence

[Clark di Leoni, Mininni & Brachet, PRA (2015)]

Quantum turbulence Helicity in quantum flows

- $H = \int u \times \omega dV$
- It's a measure of how knotted the field lines are [Moffat (1968)]
- Difficult to calculate in quantum flows because along vortex lines, as both velocity and vorticity are singular
- Some authors have calculated helicity with topological tools, others have filtered the fields, we have regularized them!

2048³ grid points

Quantum turbulence Helicity in quantum flows

We start by studying simple flow configurations

Quantum turbulence results Helicity in quantum flows

We can study the evolution of helicity.
The values coincide with those calculated via topological methods.
Not all reconnection events conserve helicity.
[Clark di Leoni, Mininni & Brachet, PRA (2016)]

Quantum turbulence What happens when two rings reconnect?

Quantum turbulence What about the trefoil knot?

When helicity is not conserved, Kelvin waves are excited and phonons are emitted [Clark di Leoni, Mininni & Brachet, PRA (2016)] 32

Quantum turbulence Helicity in quantum flows

We can use the regularized helicity to study turbulent flows In the classical case there's a dual cascade of energy and helicity [Brissaud et al (1973)]. What about the quantum case?

Quantum tornadoes!

A dual cascade is also present in the quantum case. Kelvin wave presence confirmed via spatio-temporal spectra. Look at that bottleneck! [Clark di Leoni, Mininni & Brachet, PRA (2017)]

Closing remarks

Thanks to spatiotemporal spectra we were able to:

- Detect mixed wave and soliton turbulence states in gravity surface waves
- Spot bound modes in gravito-capillary turbulence
- Determine which scales are dominated by waves in rotating and stratified flows
- Detect Doppler shift and critical layer absoption in stratified flows
- Extract Kelvin waves out of complex turbulent flows