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Where we can find point-source-like emissions

Volcano eruptions Burning and pollutants dispersion



Plan of the talk

How pairs of tracer particles separate in homogeneous
and isotropic turbulence

DNS results and comparison with Richardson’s PDF

Simple model of the eddy-diffusivity to characterize the
importance of finite Reynolds number effects on tracer
particles dispersion

Intermittency in tracer pairs separation



Richardson’s law (1926)

Diffusive process in inertial subrange characterized
by an effective turbulent diffusivity

Drie(r) = 5 5g7 ~ m(0){(6:0)%) ~ 1*/°

Richardson’s approach can be reinterpreted as the
evolution of a particle pair in a stochastic Gaussian
and delta-correlated in time velocity field
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If the eddy-diffusivity has a power law behavior D (r) = D,r* with 0 < ¢ <2

we obtain an asymptotic form of P(r,t)
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Richardson’s expression

Log-normal expression



Numerical simulation details
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* 3-D homogeneous isotropic flow at Re, ~ 300
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* Regular cubic box (10243 grid points) with
periodic BC

« 256 sources where anyone emits 2000 tracers
every 1,

* 4 x 10" particle pairs

*  Parallel pseudo-spectral code @V/



10°
10°
107
N 4'
=10}
s _
= 10°
LC
g o8
10710
10712

Comparison with Richardson’s PDF
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Strong departures from the
ideal self-similar Richardson
distribution

These unideal effects can be either due to finite Reynolds effects or
by neglected temporal correlations, or both




Eddy-diffusivity model (finite Reynolds effects)
R.Scatamacchia, L.Biferale and F. Toschi. PRL 109, 144501 (2012)

Numerical integration of Richardson diffusive equation using an effective turbulent
eddy-diffusivity that keeps in account the viscous and large scale cut-offs
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Fitting formula that matches the expected UV and IR scaling for both t(r) and <(6,v)*>
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Model-DNS compared
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It is not enough to impose a saturation in the effective eddy-diffusivity
to reproduce the fastest-cases: something strongly different from a
delta-correlated in time must be used



Multifractal prediction for pairs separation
L.Biferale , A.S. Lanotte, R.Scatamacchia, and F. Toschi. Accepted in JFM (2014)

Let’s start from the following exact relation
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Let’s suppose that the correlation can be estimated with Eulerian quantities
(rp_l(dru)> X /dhr3_D(h)rp_1rh

Using the bridge relation ¢ ~ r/6,u ~ r1=" we can relate the Eulerian and
Lagrangian statistics
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After a time integration and using a saddle point approximation, we get
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Multifractal prediction for pairs separation

To measure the scaling behaviours we use the Extended Self Similarity (ESS)
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Using the multifractal prediction for a(p)
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The multifractal prediction works better
than the dimensional one.

Because the plateau is very narrow it is
necessary waiting for data at high Re
before making any firm conclusion.



Conclusion

 We showed for the first time that both extremal “fast” and
“slow” separations events DO NOT FOLLOW Richardson-like
inertial and self-similar behavior.

* By using a model that keeps into account viscous and integral
scale physics, we got a qualitative agreement with DNS data.

* The multifractal approach for the scaling behaviours of <7°p (t)>
goes in the right direction but, due to viscous contaminations
of the inertial range we don’t observe a clear proof.



