

Slide of the Seminar

Turbulence modification by inertial particles

Prof. P. Gualtieri, F. Battista, J.P. Mollicone & C.M. Casciola

ERC Advanced Grant (N. 339032) "NewTURB" (P.I. Prof. Luca Biferale)

Università degli Studi di Roma Tor Vergata C.F. n. 80213750583 – Partita IVA n. 02133971008 - Via della Ricerca Scientifica, I – 00133 ROMA

Turbulence modification by inertial particles

P. Gualtieri, F. Battista, J.P. Mollicone & C.M. Casciola

Dipartimento di Ingegneria Meccanica e Aerospaziale Sapienza Università di Roma

NewTURB MEETING Tor Vergata, July 2016

European Research Council

Established by the European Commission

Supporting top researchers from anywhere in the world

Particle laden flows

Nature & Technology

- Liquid and solid fuels [Jenny et al. Prog. Comb. Sci. (2012)]
- Rain formation in clouds [Falkovich *al.* Nat. (2002)]
- Cyclonic separators

[Kilstrom, Patent No. 5,935,279. (1999)]

Storm on mount Amiata, Tuscany

[Elghobashi (1994); Balachandar & Eaton (2010)]

- (1) one-way coupling
- (1) + (2) two-way coupling [dilute suspension $\Phi_V \ll 1$ but finite mass loading $\Phi = \rho_p / \rho_f \Phi_V$]
- (1) + (2) + (3) + (4) four-way coupling
- beyond the one-way coupling · · · · · ·
 ⇒ turbulence modulation in the *two-way coupling regime*

Particle In Cell approach (PIC) [Crowe et al. J. Fluid Eng. (1977)]

• Eulerian description (fluid) & Lagrangian tracking (particles) [Eaton (2009); Balachandar & Eaton (2010); Elghobashi (1994)]

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla \pi + \nu \nabla^2 \mathbf{u} - \frac{1}{\rho_f} \sum_p \mathbf{D}_p(\mathbf{t}) \delta \left[\mathbf{x} - \mathbf{x}_p(\mathbf{t}) \right]$$

• The *back-reaction* **F** is singular: average on the cell ΔV_{cell}

$$\mathbf{F}(\mathbf{x}_p) = \frac{1}{\Delta V_{cell}} \frac{1}{\rho_f} \mathbf{D}_p$$

equivalent to $\{\mathbf{F}(\mathbf{x}_q)\}_{q=1,8}$

$$\sum_{q=1}^{8} \mathbf{F}(\mathbf{x}_q) = \mathbf{F}(\mathbf{x}_p)$$

$$\sum_{q=1}^{8} \left(\mathbf{x}_{q} - \mathbf{x}_{p} \right) \times \mathbf{F}(\mathbf{x}_{q}) = 0$$

PIC: numerical issues

The tails of the spectra hardly decay when $N_p/N_c \ll 1$

- fine grids require a large number of particles
- grid dependent forcing
- limitations on the mass load

 \otimes

λ

P.G., F. Picano, G. Sardina, C.M. Casciola, JFM 715 (2013)

PIC: numerical issues

The tails of the spectra hardly decay when $N_p/N_c \ll 1$

- fine grids require a large number of particles
- grid dependent forcing
- limitations on the mass load

 \otimes

P.G., F. Picano, G. Sardina, C.M. Casciola, JFM 715 (2013)

Exact Regularized Point Particle (ERPP) method

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \nu \nabla^2 \mathbf{u} \\ \mathbf{u}|_{\partial \Omega_p} = \mathbf{v}_p; \quad \mathbf{u}|_{\partial \Omega} = \mathbf{u}_{wall} \\ \mathbf{u}(\mathbf{x}, t_n) = \mathbf{u}_0(\mathbf{x}) \end{cases}$$

Decompose the (incompressible) fluid velocity \mathbf{u} in a background flow \mathbf{w} and a perturbation \mathbf{v} , namely $\mathbf{u} = \mathbf{w} + \mathbf{v}$

$$\begin{pmatrix}
\frac{\partial \mathbf{w}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla \pi + \nu \nabla^2 \mathbf{w} \\
\mathbf{w}|_{\partial \Omega} = \mathbf{u}_{wall} - \mathbf{v}|_{\partial \Omega} \\
\mathbf{w}(\mathbf{x}, t_n) = \mathbf{u}_0(\mathbf{x})
\end{pmatrix}
\begin{cases}
\frac{\partial \mathbf{v}}{\partial t} = -\nabla \tilde{p} + \nu \nabla^2 \mathbf{v} \\
\mathbf{v}|_{\partial \Omega_p} = \mathbf{v}_p - \mathbf{w}|_{\partial \Omega_p} \\
\mathbf{v}(\mathbf{x}, t_n) = 0
\end{cases}$$

Perturbation **v** described in terms of unsteady Stokes equations P.G., F. Picano, G. Sardina, C.M. Casciola, JFM **773** (2015)

ERPP: perturbation field

Exact solution of the unsteady Stokes problem

$$v_i(\mathbf{x},t) = \int_0^t d\tau \int_{\partial\Omega} t_j(\boldsymbol{\xi},\tau) G_{ij}(\mathbf{x},\boldsymbol{\xi},t,\tau) - v_j(\boldsymbol{\xi},\tau) \mathcal{T}_{ijk}(\mathbf{x},\boldsymbol{\xi},t,\tau) n_k(\boldsymbol{\xi}) \, dS$$

 G_{ij} the unsteady Stokeslet; \mathcal{T}_{ijk} the associated stress tensor

For *small particles* the *far field* disturbance is estimated in terms of multipole expansion [Kim & Karilla, Microfluidics, (2000)]

$$v_i(\mathbf{x},t) \simeq -\int_0^t D_j(\tau) G_{ij}(\mathbf{x},\mathbf{x}_p,t,\tau) d\tau$$

with $\mathbf{D}(\tau)$ hyrodynamic force, i.e. the Stokes Drag (... or more [Maxey & Riley, (1983); Gatignol (1983)])

ERPP: vorticity

Eulerian far field disturbance $\mathbf{v}(\mathbf{x}, t)$ described by the unsteady singularly forced Stokes equation

$$\frac{\partial \mathbf{v}}{\partial t} - \nu \nabla^2 \mathbf{v} + \nabla \tilde{p} = -\frac{\mathbf{D}(t)}{\rho_f} \,\delta\left[\mathbf{x} - \mathbf{x}_p(t)\right]$$

How to regularize the solution of the disturbance field?

Physics of the coupling

The vorticity, once generated along the particle trajectory, is diffused by viscosity and then injected into the Eulerian grid

vorticity generated by the particle —

Eulerian Navier–Stokes solver

ERPP: vorticity diffusion

Why vorticity? \Rightarrow Diffusion equation

$$\partial_t \boldsymbol{\zeta} - \nu \nabla^2 \boldsymbol{\zeta} = \frac{\mathbf{D}(t)}{\rho_f} \times \nabla \delta \left[\mathbf{x} - \mathbf{x}_p(t) \right]$$

Fundamental solution

$$\partial_t g - \nu \nabla^2 g = \delta \left(\mathbf{x} - \mathbf{x}_p \right) \delta(t - \tau)$$

$$g(\mathbf{x}, \mathbf{x}_p, t, \tau) = \frac{1}{(2\pi\sigma^2)^{3/2}} \exp\left(\frac{-\|\mathbf{x} - \mathbf{x}_p\|^2}{2\sigma^2}\right), \quad \sigma(t - \tau) = \sqrt{2\nu(t - \tau)}$$

For $t > \tau$ the solution is both

$$-$$
 regular, e.g. $g \in C^{\infty}$

- *local*, i.e decays more than exponentially

ERPP: vorticity regularization

• Analytical solution expressed as a convolution with the fundamental solution of the diffusion equation

$$\boldsymbol{\zeta}(\mathbf{x},t) = \frac{1}{\rho_f} \int_0^t \mathbf{D}(\tau) \times \nabla g \left[\mathbf{x} - \mathbf{x}_p(\tau), t - \tau \right] d\tau$$

- For $\tau \simeq t$, $g(\mathbf{x}, \mathbf{x}_p, t, \tau)$ tends to behave as badly as the Dirac delta function \Rightarrow split $\boldsymbol{\zeta} = \boldsymbol{\zeta}_{Regular} + \boldsymbol{\zeta}_{Singular}$
- The regularization procedure adopts a temporal cut-off ϵ_R

$$\boldsymbol{\zeta}_{R}(\mathbf{x},t) = \frac{1}{\rho_{f}} \int_{0}^{t-\epsilon_{R}} \mathbf{D}(\tau) \times \nabla g \left[\mathbf{x} - \mathbf{x}_{p}(\tau), t-\tau\right] d\tau$$

 \Rightarrow Regularized field ζ_R everywhere smooth and characterized by the smallest spatial scale $\sigma_R = \sqrt{2\nu\epsilon_R}$

ERPP: coupling with the carrier phase

• The regular component of the vorticity field ζ_R satisfy

$$\frac{\partial \boldsymbol{\zeta}_R}{\partial t} - \nu \nabla^2 \boldsymbol{\zeta}_R = \frac{1}{\rho_f} \nabla \times \mathbf{D}(t - \epsilon_R) g \left[\mathbf{x} - \mathbf{x}_p(t - \epsilon_R), \epsilon_R \right]$$

• The regular (perturbation) velocity field \mathbf{v}_R follows as

$$\frac{\partial \mathbf{v}_R}{\partial t} - \nu \nabla^2 \mathbf{v}_R = -\frac{1}{\rho_f} \mathbf{D}(t - \epsilon_R) g \left[\mathbf{x} - \mathbf{x}_p(t - \epsilon_R), \epsilon_R \right]$$

• The fluid velocity $\mathbf{u} = \mathbf{w} + \mathbf{v}_R$ is then given by

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \nu \nabla^2 \mathbf{u} - \sum_{p=1}^{N_p} \frac{\mathbf{D}_p(t - \epsilon_R)}{\rho_f} g\left[\mathbf{x} - \mathbf{x}_p(t - \epsilon_R), \epsilon_R\right]$$

- Remarks
 - simply add an extra term in any N S solver
 - "anticipated" Green function: diffusion timescale ϵ_R
 - the function g is *local* in space \Rightarrow *computational efficiency*

ERPP: a cartoon

$$\boldsymbol{\zeta}(\mathbf{x},t) = \frac{1}{\rho_f} \int_0^t \mathbf{D}(\tau) \times \nabla g \, d\tau \qquad \boldsymbol{\zeta}_R(\mathbf{x},t) = \frac{1}{\rho_f} \int_0^{t-\epsilon_R} \mathbf{D}(\tau) \times \nabla g \, d\tau$$

 \Rightarrow Vorticity at scales smaller that $\sigma_R = \sqrt{2\nu\epsilon_R}$ is not neglected but injected at later times

ERPP: a cartoon

$$\boldsymbol{\zeta}(\mathbf{x},t) = \frac{1}{\rho_f} \int_0^t \mathbf{D}(\tau) \times \nabla g \, d\tau \qquad \boldsymbol{\zeta}_R(\mathbf{x},t) = \frac{1}{\rho_f} \int_0^{t-\epsilon_R} \mathbf{D}(\tau) \times \nabla g \, d\tau$$

 \Rightarrow Vorticity at scales smaller that $\sigma_R = \sqrt{2\nu\epsilon_R}$ is not neglected but injected at later times

Hydrodynamic force in the two-way coupling regime

• Newton's law

$$m_p \frac{d\mathbf{v}_p}{dt} = \mathbf{D}_p(t) = 6\pi\mu a_p \left[\tilde{\mathbf{u}}(\mathbf{x}_p, t) - \mathbf{v}_p(t)\right]$$

- $\Rightarrow \tilde{\mathbf{u}}(\mathbf{x}_p, t) \text{ fluid velocity at } \mathbf{x}_p \text{ in absence of the particle}$ [Boivin et al. (1998); Jenny et al. (2012), P.G. et al. (2013,2015); Horwitz et al. (2016)]
 - Removal of the self-disturbance \mathbf{v}_{pth} from $\mathbf{u}(\mathbf{x}, t)$

$$\tilde{\mathbf{u}}(\mathbf{x}_p, t) = \mathbf{u}(\mathbf{x}_p, t) - \mathbf{v}_{p\text{th}} \left[\mathbf{x}_p(t) - \mathbf{x}_p(t_n); Dt\right]$$

• Self-disturbance velocity evaluated in closed form

$$\mathbf{v}(\mathbf{r}, Dt) = \frac{1}{(2\pi\sigma^2)^{3/2}} \left\{ \left[e^{-\eta^2} - \frac{f(\eta)}{2\eta^3} \right] \mathbf{D}_p^n - \left(\mathbf{D}_p^n \cdot \hat{\mathbf{r}} \right) \left[e^{-\eta^2} - \frac{3f(\eta)}{2\eta^3} \right] \hat{\mathbf{r}} \right\}$$

where $\mathbf{r} = \mathbf{x}(t) - \mathbf{x}_p(t_n); \quad \eta = r/\sqrt{2}\sigma; \quad \sigma = \sqrt{2\nu(\epsilon_R + Dt)}$ and

$$f(\eta) = \frac{\sqrt{\pi}}{2} \operatorname{erf}(\eta) - \eta e^{-\eta^2}$$

Turbulent Flows: Homogeneos shear flow

$$Re_{\lambda} = 80$$

 $St_{\eta} = 1, \ \Phi = 0.4$
 $N_p = 2.200.000$
 $d_p/\eta = 0.1$

- Remarks
 - regularization scale $\sigma_R = \eta$
 - the feedback field is everywhere *smooth*

Turbulent Flows: Homogeneos shear flow

$$Re_{\lambda} = 80$$

 $St_{\eta} = 1, \ \Phi = 0.4$
 $N_p = 2.200.000$
 $d_p/\eta = 0.1$

• Remarks

- regularization scale $\sigma_R = \eta$
- the feedback field is everywhere *smooth*

Turbulent Flows: Homogeneos shear flow

$$Re_{\lambda} = 80$$

 $St_{\eta} = 1, \ \Phi = 0.4$
 $N_p = 2.200.000$
 $d_p/\eta = 0.1$

|f|:

• Remarks

- regularization scale $\sigma_R = \eta$
- the feedback field is everywhere *smooth*

Turbulence modulation: velocity variances

- Remarks
 - Fluctuations attenuated at increasing mass loadings
 - Selective turbulence modification
 - Effect of St_{η} on anisotropic turbulence modulation

Turbulence modulation: velocity variances

- Remarks
 - Fluctuations attenuated at increasing mass loadings
 - Selective turbulence modification
 - Effect of St_{η} on anisotropic turbulence modulation

Small scale isotropy recovery?

• Large & Small scale anisotropy indicator

$$b_{\alpha\beta} = \frac{\langle u_{\alpha}u_{\beta}\rangle}{\langle u_{\gamma}u_{\gamma}\rangle} - \frac{1}{3}\delta_{\alpha\beta} \qquad d_{\alpha\beta} = \frac{\epsilon_{\alpha\beta}}{\epsilon_{\gamma\gamma}} - \frac{1}{3}\delta_{\alpha\beta}$$

Anisotropy enhanced in the two-way coupling regime

Energy spectrum

• ERPP vs. PIC @
$$\Phi = 0.4$$
, $St_{\eta} = 1$

Energy spectrum

Dissipation spectrum

- Remarks
 - E(k) and $2\nu k^2 E(k)$ nicely smooth at small scales
 - ERPP prediction independent on N_p/N_c
 - Small scale fluctuations energized by the backreaction
 - Turbulence modulation controlled by Φ and St_{η}

Turbulent spectra

• Effect of Mass loading Φ and Stokes number St_{η}

Energy spectrum

Velocity components spectrum

- Remarks
 - Small scale fluctuations energized at $St_{\eta} = 1$
 - Energy attenuation at all scales for $St_{\eta} = 5$
 - Anisotropic turbulence modulation at different scales

Turbulent spectra

• Effect of Mass loading Φ and Stokes number St_{η}

Energy spectrum

Velocity components spectrum

- Remarks
 - Small scale fluctuations energized at $St_{\eta} = 1$
 - Energy attenuation at all scales for $St_{\eta} = 5$
 - Anisotropic turbulence modulation at different scales

Energy spectrum: scaling in the two-way regime

- Energy balance $T(k) + P(k) D(k) + \Psi(k) = 0$
- At scales $k\eta \sim 1$ and $k\sigma_R < 1$

feedback ~ dissipation $\Rightarrow \Psi(k) \sim D(k) \Rightarrow E(k) \propto k^{-4}$

 \Rightarrow Convergent solutions w.r.t. regularization parameter σ_R/η [P.G., Battista, C.M. Casciola, sub. Phys. Rev. Lett. 2016]

Energy spectrum: scaling in the two-way regime

- Energy balance $T(k) + P(k) D(k) + \Psi(k) = 0$
- At scales $k\eta \sim 1$ and $k\sigma_R < 1$

feedback ~ dissipation $\Rightarrow \Psi(k) \sim D(k) \Rightarrow E(k) \propto k^{-4}$

 \Rightarrow Convergent solutions w.r.t. regularization parameter σ_R/η [P.G., Battista, C.M. Casciola, sub. Phys. Rev. Lett. 2016]

Karman-Howarth equation

- Scale-by-scale turbulence dynamics
 - production of scale energy $(L_0 < r < L_S)$

- non linear energy transfer
$$(L_S < r < \eta)$$

- viscous effects $(r \sim \eta)$

$$\nabla_{\mathbf{r}} \cdot \mathbf{\Phi}_{\mathbf{r}} = \Pi_{\mathbf{r}} - 4\bar{\epsilon}$$

with

$$\Phi_{\mathbf{r}} = \underbrace{\langle |\delta \mathbf{u}|^2 \, \delta \mathbf{u} \rangle}_{\text{inertial flux}} + \underbrace{2\nu \nabla_{\mathbf{r}} \langle |\delta \mathbf{u}|^2 \rangle}_{\text{viscous flux}} \qquad \Pi_{\mathbf{r}} = \underbrace{2S \langle \delta u \, \delta v \rangle}_{\text{production}}$$

 \Rightarrow In multiphase flows and extra term accounts for the *energy* source/sink due to the dispersed phase

$$\nabla_{\mathbf{r}} \cdot \boldsymbol{\Phi}_{\mathbf{r}} = \Pi_{\mathbf{r}} - 4\bar{\epsilon} + \boldsymbol{\Psi}_{\mathbf{r}}$$

with

$$\Psi_{\mathbf{r}} = \underbrace{2\langle \delta \mathbf{f} \cdot \delta \mathbf{u} \rangle}_{\text{feedback}}$$

KH budget in multiphase flows

• integrate over a ball \mathcal{B}_r of radius r

$$S_3^{trn} + S_{uv}^{prd} + S_2^{dif} + S_{fu}^{prtcl} = -\frac{4}{3}\overline{\epsilon}r$$

- Effect of the particles
 - intercept energy at large scale and release it at small scales
 - stall the energy cascade
 - small-scale pumping

KH budget in multiphase flows

• integrate over a ball \mathcal{B}_r of radius r

$$S_3^{trn} + S_{uv}^{prd} + S_2^{dif} + S_{fu}^{prtcl} = -\frac{4}{3}\overline{\epsilon}r$$

- Effect of the particles
 - intercept energy at large scale and release it at small scales
 - stall the energy cascade
 - small-scale pumping

KH budget in multiphase flows

• integrate over a ball \mathcal{B}_r of radius r

$$S_3^{trn} + S_{uv}^{prd} + S_2^{dif} + S_{fu}^{prtcl} = -\frac{4}{3}\overline{\epsilon}r$$

- Effect of the particles
 - intercept energy at large scale and release it at small scales
 - stall the energy cascade
 - small-scale pumping

Final remarks

- ERPP method
 - based on physical arguments \Rightarrow Unsteady Stokes Solutions
 - easy to implement and portable
- Turbulence in multiphase flows
 - selective modification of turbulence intensities
 - scaling $E(k) \propto k^{-4}$ where feedback ~ dissipation
 - energy cascade stalled at high mass loadings
 - (anisotropic) pumping at small scales
- \Box Credits
 - PRACE projects FP7 RI-283493 and #2014112647
 - ERC grant #339446 BIC: Bubbles from Inception to Collapse, P.I. C.M. Casciola