Olfactory search POMDP

Optimal policies for Bayesian olfactory search in a turbulent flow

R. A. Heinonen¹, F. Bonaccorso¹, L. Biferale¹, A. Celani², and M. Vergassola³

¹Dept. Physics and INFN, University of Rome, "Tor Vergata"
²The Abdus Salam International Center for Theoretical Physics
³Dept. Physics, Ecole Normale Supérieure

Supported by the European Research Council under grant No. 882340

POMDP and optimal policies

Olfactory search POMDP

Moving to a "real" turbulent flow

Olfactory search problem

POMDP and optimal policies

Olfactory search POMDP

Introduction: searching for an odor source

- Insects often need find source (usually upwind) of an odor or other cue advected by the atmosphere
- E.g. mosquito drawn to human by CO₂; moth drawn to mate by pheromones
- Source may be \sim 100 m away(!)
- N.B. also applications to aquatic animals, robotics

Figure Artist's conception of a moth searching for a mate via pheromone cues.

POMDP and optimal policies

Olfactory search POMDP

The effect of turbulence

- Classical search strategy is chemotaxis, i.e. just go up the concentration gradient
- But: turbulence mixes cue into stochastic, intermittent landscape. Gradient estimation is unfeasible

Figure Artist's conception of chemotaxis strategy.

Figure A turbulent environment leads to a patchy odor landscape with intermittent detections.

POMDP and optimal policies

Olfactory search POMDP

Noving to a "real" turbulent flow

Concentration intermittency from experiment

Figure Concentration field from jet flow experiment [Villermaux and Innocenti, 1999]. Fig taken from [Celani et al., 2014]

Figure Time series from experiment showing concentration signal 50 m from a propylene source over 16 minutes. From [Yee et al., 1993]

POMDP and optimal policies

Olfactory search POMDP

Real moth trajectory

Figure Trajectory of gypsy moth from experiment [David et al., 1983] as it tracks sex pheromone source, showing upwind surging when in the plume and crosswind casting when out of the plume

Olfactory search problem 00000●0 POMDP and optimal policies

Olfactory search POMDP

A first heuristic: cast-and-surge

۲

[Balkovsky and Shraiman, 2002] introduced "cast-and-surge" heuristic policy based on observed insect behavior

- Agent has internal clock τ that counts timesteps since last detection
- Agent zigzags toward the source, with length of crosswind excursions increasing with τ
- Model-free approach (no knowledge of the statistics)

Figure Heuristic cast-and-surge searching in toy environment based on [Balkovsky and Shraiman, 2002]

POMDP and optimal policies

Olfactory search POMDP

"Optimal" policies?

- Cast-and-surge has good qualitative performance, but one can certainly do better. What is best?
- Idea of this work: what strategy minimizes the time of arrival?
- To define this, need some background....

Olfactory search POMDP

Moving to a "real" turbulent flow

POMDP and optimal policies

Markov decision processes

- Agent interacts with environment by taking actions a ∈ A at each t_i
- Relevant information about system at t_i captured by state s ∈ S. State evolves according to Pr(s'|s, a)
- By assumption: transitions enjoy Markov property. (N.B. extending state to $\tilde{s}_t = \{s_t, s_{t-1}, \dots, s_{t-k}\}$ captures finite-time memory)
- Agent receives reward R according to $\Pr(R|s, s', a)$ (can be < 0)
- Goal: craft policy $\pi : s \mapsto a$ maximizing $\mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} R_{t}]$, $0 < \gamma \leq 1$

POMDP and optimal policies

Olfactory search POMDP

MDP example: inverted pendulum

- State is $\{\theta, \dot{\theta}, x, \dot{x}\}$. Evolves according to EOM
- Actions: apply over Δt some voltage V ∈ [−V_{max}, V_{max}] to a motor, induces F
- Goal: $\theta \rightarrow 0$, minimize power output \mathcal{P}
- Motivates reward

$$R_t = - heta(t)^2 - a\dot{ heta}(t)^2 - b\mathcal{P}(t), \ a, b > 0$$

Olfactory search POMDP

Partial observability

- In practice, we don't always have access to the state (in fact, we usually don't!)
- Suppose in previous example we only measure $\mathbf{s} = [\theta, \dot{\theta}, x, \dot{x}]$ with uncertainties σ (say Gaussian, uncorrelated)
- System is now partially observable
- Measurements are now observations *o* ∈ *O*, supply *information* about true states *s* thru likelihood Pr(*o*|*s*, *a*)
- In this example, $\Pr(\mathbf{o}|\mathbf{s}) \propto \prod_{i} \exp\left[-(o_i - s_i)^2/2\sigma_i^2\right]$

Figure Partially observable Markov

Bayesian inference

- At timestep t, agent has history (a₁, o₁, a₂, o₂, ..., a_{t-1}, o_t).
 What does this say about state?
- Assuming system is Markovian, information can be stored in a probability distribution ("belief") b over s
- Update *b* after taking *a* and observing *o* using Bayes' theorem

$$b(s')_{o,a} = \Pr(o|s',a) \sum_{s} b(s) \Pr(s'|s,a)/Z$$

- Model-based approach need Pr(o|s', a)
- Goal: seek policy $\pi: b \mapsto a$ which maximizes reward

Olfactory search POMDP

POMDP example: Bernoulli bandits

- Classic decision problem: k slot machines.
 Each pays out unit reward with unknown probabilities p_i
- Which sequence of levers to pull to maximize total (discounted) reward?
- Tradeoff between exploration (discover the *p_i*) and exploitation (reap rewards)
- As POMDP: static state $s = \{p_1, \dots, p_k\}$, actions $a \in \{1, \dots, k\}$,

observations $o_t = R_t \in \{0, 1\}$

•
$$\Pr(o = 1 | s, a = j) = p_j;$$

 $\Pr(o = 0 | s, a = j) = 1 - p_j$

• N.B. optimal policy can be specified exactly (Gittins 1974)

Figure Artist's conception of a multi-armed bandit agent

POMDP and optimal policies

Olfactory search POMDP

Optimal POMDP planning: Bellman equation

Define value function V_π(b) as total expected reward under π conditioned on b (assume R = R(s, a)):

$$V_{\pi}(b) = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty}\sum_{s\in S}\gamma^{t}b_{t}(s)R(s,\pi(b_{t}))\Big|b_{0}=b
ight]$$

• Optimal value function satisfies Bellman equation

$$V^{*}(b) = \max_{a \in A} \left[\underbrace{\sum_{\substack{s \in S \\ \text{immediate expected} \\ \text{reward}}}_{R(s, a)b(s)} + \gamma \underbrace{\sum_{\substack{o \in O \\ \text{future expected rewards}}}_{\text{future expected rewards}} \right]$$

 In principle, can be solved exactly, but partial observability makes solution computationally hard. Belief simplex very large (dimension |S|-1)! "Curse of dimensionality"

• Knowing
$$V^*(b)$$
 instantly gives you π^*

Olfactory search POMDP

Moving to a "real" turbulent flow

Olfactory search POMDP

POMDP and optimal policies

Olfactory search POMDP

Model search problem

- State: relative position of agent w.r.t. source (unknown) $\boldsymbol{s}=\boldsymbol{r}-\boldsymbol{r}_0$
- Agent makes observation (detection or nondetection) then moves. Assume a strong swimmer (no advection by the flow)
- Try to reach source in as few Δt as possible give reward γ^{T} for reaching source in T steps (0 < γ < 1)
- Key physics input is $\Pr(o|\mathbf{s})$

Figure In our setup, agent lives on the gridworld (blue points) and tries to find the source (red x)

POMDP and optimal policies

Olfactory search POMDP

Diffusive model of environment

Advection-diffusion eq.

stationary solution $+ 4\pi aDc$ detections/time \implies detection rate

$$h = \frac{aR}{|\mathbf{x}|} \exp\left(\frac{Vx}{2D} - \frac{|\mathbf{x}|}{\lambda}\right), \ p(\mathrm{obs}|\mathbf{x}) = 1 - e^{-h\Delta t}$$

POMDP and optimal policies

Olfactory search POMDP

Infotaxis: an important model-based heuristic

• [Vergassola et al., 2007] suggested a policy that seeks to maximize information content of belief

$$\pi(b) = \operatorname*{arg\,min}_{a} \sum_{o} \Pr(o|b,a) H[b_{o,a}]$$

where
$$H[b] = -\sum_{s} b(s) \log b(s)$$
.

- Prioritizes exploration (seek information about source) over exploitation (use information to move towards source)
- Generally performs extremely well, but can improve by adding information about distance from source [Loisy and Eloy, 2022]

Figure Sample infotaxis trajectory in toy environment.

Optimal policies

- Recent work has demonstrated the present POMDP can be solved effectively using at least three algorithms (Perseus w/ reward shaping, SARSOP, model-based DQN). Can usually beat all available heuristics
 - Loisy and Eloy Proc. R. Soc. Lond. (2022) DQN in windless setting
 - RAH, Biferale, Celani, and Vergassola PRE (2023) Perseus in windy setting
 - Loisy and RAH EPJE (2023) benchmark on Perseus, SARSOP, DQN in windy and windless settings
- But this work done in "toy model" setting (statistics imposed by hand)

Olfactory search POMDP

Performance of Perseus policies vs. heuristics

Figure Excess mean arrival times $\langle \tilde{T} \rangle = \langle T \rangle - \langle T_{MDP} \rangle$ for test problems. $\bar{S} = a \Delta t R / \Delta x$ is nondimensional emission rate

Olfactory search POMDP

Moving to a "real" turbulent flow

Olfactory search POMDP

The DNS

- 3-D incompressible Navier-Stokes with mean wind V on $1024 \times 512 \times 512$ grid in turbulent regime $\text{Re}_{\lambda} \simeq 150$
- Periodic BCs, stochastic large-scale forcing
- Lagrangian particles emitted simultaneously from point sources at 5 locations, data dumped every τ_{η} ($\sim 4000\tau_{\eta}$ total)
- Have data for 5 different mean flow speeds ($V/\tilde{v}\simeq 0, 1.5, 3, 6, 9$)

Olfactory search POMDP

Coarse-graining

- To move to POMDP setting, data are coarse-grained on a quasi-2D slice to obtain 99 \times 33 grid with spacing $\sim 10\eta$
- Particles counted to obtain concentration field

POMDP and optimal policies

Olfactory search POMDP

Empirical likelihood

- Define $c_{
 m thr} \gg \langle c | c > 0
 angle$
- Pr(o|s) ≡ Pr(c(s) ≥ c_{thr}) averaged over time and source locations, symmetrized across wind axis
- Use SARSOP to solve for policy using either empirical likelihood or fit to model

Figure Empirical log10-likelihood of observation for $c_{
m thr}=$ 100, $V/ ilde{v}\simeq$ 9

POMDP and optimal policies

Olfactory search POMDP

Searching in the DNS: near-optimal vs. heuristics

Olfactory search POMDP 000000

Arrival time statistics for $V/\tilde{v} \simeq 9$

Figure Arrival time pdfs for searching in the source

Figure Mean arrival time (minus distance from source) conditioned on starting position

policy	$\mathbb{E}[T T < T_{\max}]$	$\Pr(T \ge 50)$	$\Pr(T \ge 100)$	$\Pr(T \ge T_{\max})$
SARSOP	39.4 ± 0.2	0.223 ± 0.001	0.0951 ± 0.0009	$< 10^{-5}$
SAI	43.0 ± 0.2	0.263 ± 0.001	0.124 ± 0.001	0.0014 ± 0.0001
infotaxis	48.6 ± 0.2	0.277 ± 0.001	0.145 ± 0.001	0.0013 ± 0.0001

Table 1: Arrival time statistics when using the empirical likelihood and searching within the DNS.

Olfactory search POMDP

Optimal behaviors

Near-optimal policies exhibit behaviors seen in real moths. As time since last encounter grows, agent zigzags cross-wind with increasing amplitude. Eventually turns downwind to avoid missing the source

Olfactory search POMDP

Correlations

- Real flows are not Markovian: due to spatial structure of puffs, consecutive observations usually positively correlated
- Correlation strength sensitive to flow speed, plume shape, $c_{
 m thr}$
- Define $\alpha \equiv \frac{\log \Pr(o_t=1|o_{t-1}=1,s,a)}{\log \Pr(o_t=1|,s,a)}$ so that $\alpha < 1 \implies$ correlated, $\alpha > 1 \implies$ anticorrelated
- Rescale flow time $t \rightarrow ct$

POMDP and optimal policies

Olfactory search POMDP

Correlations in the POMDP

- In principle, POMDP can accommodate arbitrary correlations by augmenting state space s → s ⊗ o_{t-1} ⊗ · · · ⊗ o_{t-k}
- Affects both Bayes inference and optimization (solution of Bellman)
- But makes problem exponentially harder computationally
- Q: does minimal extension (k = 1) improve search performance? i.e. exponentially decaying correlations

POMDP and optimal policies

Olfactory search POMDP

Artificial correlations

- Control correlations by hand: impose log likelihood ratio α artificially, constant over ${\bf x}$ and actions
- Fix unconditioned likelihood to that obtained empirically. Law of total probability $Pr(A) = \sum_{B} Pr(A|B)P(B)$ then sets conditional likelihoods

Takeaway: correlations make searching harder. Only partially mitigated by including them in optimization and Bayesian inference

POMDP and optimal policies

Olfactory search POMDP

Searching in a slower flow

- ullet Now, modify correlations by changing flow speed $t_{\rm flow} \rightarrow c t_{\rm flow}$
- As flow slows down agent has more time to see spatial structure of odor dispersal
- Uncorrelated for $c \to \infty,$ frozen flow with strong corr. for $c \to 0$

Figure Mean arrival times w/and w/o correlation sensitivity. Non-monotonic behavior?

Figure Non-monotonicity disappears if average conditioned on not starting close to the source

POMDP and optimal policies

Olfactory search POMDP

Effect of correlations

 What's going on? Correlations impact convergence rate of posterior

$$b(s) = \frac{\exp\left(\sum_{t=1}^{N} \lambda_t\right) b_0(s)}{\sum_s \exp\left(\sum_{t=1}^{N} \lambda_t\right) b_0(s)}$$

where $\lambda_t = \log \ell(o_t|s)$ and ℓ is likelihood under agent's model

- By Law of Large Numbers $\sum_{t=1}^{N} \lambda_t \to NE[\lambda]$
- Can show using Chebyshev's inequality that for x > 0

$$\Pr\left(\left|\frac{1}{N}\sum_{t}\lambda_{t}-E[\lambda]\right|\geq x\right)\leq\frac{2C}{Nx^{2}}$$

where $C = \sum_{t=1}^{\infty} \operatorname{Cov}(\lambda_t, \lambda_1)$.

Effect of correlations (cont'd)

- Thus C = ∑_{t=1}[∞] Cov(λ_t, λ₁) sets typical time to converge (along with spatial structure of λ)
- C increases (decreases) when positive (negative) correlations are turned on and agent is unaware
- If agent is aware, situation is less clear, but frequently find that C_{uncorr.} < C_{aware} < C_{unaware} (for positive corr.)
- This accounts for behavior seen in mean arrival time performance. Nonmonotonic effect explainable by negative correlations close to source, which this argument shows are helpful

Conclusion

- Tracking a source in turbulence is hard because there are no gradients
- POMDP formalizes difficult problem into something we can solve
- Optimal strategies for realistic flows resemble search trajectories observed in real animals
- Correlations in real flows can impede Bayesian search by slowing the convergence of the posterior

References I

Odor-modulated upwind flight of the sphinx moth, manduca sexta I. Journal of Comparative Physiology A, 169:427-440.

Olfactory search POMDP

References II

Yee, E., Kosteniuk, P., Chandler, G., Biltoft, C., and Bowers, J. (1993).

Statistical characteristics of concentration fluctuations in dispersing plumes in the atmospheric surface layer. Boundary-Layer Meteorology, 65(1):69–109.