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Introduction: searching for an odor source

Insects often need find
source (usually upwind) of
an odor or other cue
advected by the atmosphere

E.g. mosquito drawn to
human by CO2; moth drawn
to mate by pheromones

Source may be ∼ 100 m
away(!)

N.B. also applications to
aquatic animals, robotics

Figure Artist’s conception of a moth searching for a mate
via pheromone cues.
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The effect of turbulence

Classical search strategy is
chemotaxis, i.e. just go up
the concentration gradient

But: turbulence mixes cue
into stochastic,
intermittent landscape.
Gradient estimation is
unfeasible

Figure Artist’s conception of chemotaxis strategy.

Figure A turbulent environment leads to a patchy odor
landscape with intermittent detections.
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Concentration intermittency from experiment

Figure Concentration field from jet flow experiment [Villermaux and Innocenti, 1999]. Fig taken from
[Celani et al., 2014]

Figure Time series from experiment showing concentration signal 50 m from a propylene source over 16 minutes.
From [Yee et al., 1993]
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Real moth trajectory

Figure Trajectory of gypsy moth from experiment [David et al., 1983] as it tracks sex pheromone source, showing
upwind surging when in the plume and crosswind casting when out of the plume
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A first heuristic: cast-and-surge

[Balkovsky and Shraiman, 2002]
introduced “cast-and-surge”
heuristic policy based on
observed insect behavior

Agent has internal clock τ
that counts timesteps since
last detection

Agent zigzags toward the
source, with length of
crosswind excursions
increasing with τ

Model-free approach (no
knowledge of the statistics)

Figure Heuristic cast-and-surge searching in toy environ-
ment based on [Balkovsky and Shraiman, 2002]
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“Optimal” policies?

Cast-and-surge has good qualitative performance, but one can
certainly do better. What is best?

Idea of this work: what strategy minimizes the time of arrival?

To define this, need some background....
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POMDP and optimal policies
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Markov decision processes

Agent interacts with environment by taking actions a ∈ A at
each ti
Relevant information about system at ti captured by state
s ∈ S . State evolves according to Pr(s ′|s, a)
By assumption: transitions enjoy Markov property. (N.B.
extending state to s̃t = {st , st−1, . . . , st−k} captures
finite-time memory)
Agent receives reward R according to Pr(R|s, s ′, a) (can be
< 0)
Goal: craft policy π : s 7→ a maximizing Eπ[

∑∞
t=0 γ

tRt ],
0 < γ ≤ 1
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MDP example: inverted pendulum

State is {θ, θ̇, x , ẋ}. Evolves
according to EOM

Actions: apply over ∆t some
voltage V ∈ [−Vmax,Vmax] to a
motor, induces F

Goal: θ → 0, minimize power
output P
Motivates reward

Rt = −θ(t)2−aθ̇(t)2−bP(t), a, b > 0

𝑚

𝜃(𝑡)

𝐹(𝑡)

ℓ

𝑀

𝑥
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Partial observability

In practice, we don’t always have access
to the state (in fact, we usually don’t!)

Suppose in previous example we only
measure s = [θ, θ̇, x , ẋ ] with uncertainties
σ (say Gaussian, uncorrelated)

System is now partially observable

Measurements are now observations
o ∈ O, supply information about true
states s thru likelihood Pr(o|s, a)
In this example,
Pr(o|s) ∝

∏
i exp

[
−(oi − si )

2/2σ2
i

] Figure Partially observable Markov
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Bayesian inference

At timestep t, agent has history (a1, o1, a2, o2, . . . , at−1, ot).
What does this say about state?

Assuming system is Markovian, information can be stored in a
probability distribution (“belief”) b over s

Update b after taking a and observing o using Bayes’ theorem

b(s ′)o,a = Pr(o|s ′, a)
∑
s

b(s)Pr(s ′|s, a)/Z

Model-based approach — need Pr(o|s ′, a)
Goal: seek policy π : b 7→ a which maximizes reward
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POMDP example: Bernoulli bandits

Classic decision problem: k slot machines.
Each pays out unit reward with unknown
probabilities pi

Which sequence of levers to pull to
maximize total (discounted) reward?

Tradeoff between exploration (discover
the pi ) and exploitation (reap rewards)

As POMDP: static state
s = {p1, . . . , pk}, actions a ∈ {1, . . . , k},
observations ot = Rt ∈ {0, 1}
Pr(o = 1|s, a = j) = pj ;
Pr(o = 0|s, a = j) = 1− pj

N.B. optimal policy can be specified
exactly (Gittins 1974)

Figure Artist’s conception of a
multi-armed bandit agent
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Optimal POMDP planning: Bellman equation

Define value function Vπ(b) as total expected reward under π
conditioned on b (assume R = R(s, a)):

Vπ(b) = Eπ

[ ∞∑
t=0

∑
s∈S

γtbt(s)R(s, π(bt))

∣∣∣∣b0 = b

]
Optimal value function satisfies Bellman equation

V ∗(b) = max
a∈A


∑
s∈S

R(s, a)b(s)︸ ︷︷ ︸
immediate expected

reward

+γ
∑
o∈O

Pr(o|b, a)V ∗(bo,a)︸ ︷︷ ︸
future expected rewards


In principle, can be solved exactly, but partial observability makes
solution computationally hard. Belief simplex very large (dimension
|S | − 1)! “Curse of dimensionality”

Knowing V ∗(b) instantly gives you π∗
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Olfactory search POMDP
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Model search problem

State: relative position of agent w.r.t. source (unknown) s = r − r0

Agent makes observation (detection or nondetection) then moves.
Assume a strong swimmer (no advection by the flow)

Try to reach source in as few ∆t as possible — give reward γT for
reaching source in T steps (0 < γ < 1)

Key physics input is Pr(o|s)

source

mean wind

!

!
!

!!!r0

r

Δ𝑥

Δ𝑦

Figure In our setup, agent lives on the gridworld (blue points) and tries to find the source (red x)



Olfactory search problem POMDP and optimal policies Olfactory search POMDP Moving to a “real” turbulent flow

Diffusive model of environment

0 50 100
-40

-20

0

20

40

0.009
0.018
0.027
0.036
0.045
0.054
0.063
0.072
0.081
0.090

x
source

Advection-diffusion eq.

∂tc + V︸︷︷︸
mean wind

∂xc = D∇2c︸ ︷︷ ︸
turb. diffusion

+ Rδ(x)︸ ︷︷ ︸
point source

− c/τ︸︷︷︸
turb. mixing time

,

stationary solution + 4πaDc detections/time =⇒ detection rate

h =
aR

|x|
exp

(
Vx

2D
− |x|

λ

)
, p(obs|x) = 1− e−h∆t
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Infotaxis: an important model-based heuristic

[Vergassola et al., 2007] suggested
a policy that seeks to maximize
information content of belief

π(b) = argmin
a

∑
o

Pr(o|b, a)H[bo,a]

where H[b] = −
∑

s b(s) log b(s).

Prioritizes exploration (seek
information about source) over
exploitation (use information to
move towards source)

Generally performs extremely well,
but can improve by adding
information about distance from
source [Loisy and Eloy, 2022]

Figure Sample infotaxis trajectory in toy envi-
ronment.
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Optimal policies

Recent work has demonstrated the present POMDP can be
solved effectively using at least three algorithms (Perseus w/
reward shaping, SARSOP, model-based DQN). Can usually
beat all available heuristics

1 Loisy and Eloy Proc. R. Soc. Lond. (2022) — DQN in windless
setting

2 RAH, Biferale, Celani, and Vergassola PRE (2023) — Perseus
in windy setting

3 Loisy and RAH EPJE (2023) — benchmark on Perseus,
SARSOP, DQN in windy and windless settings

But this work done in “toy model” setting (statistics imposed
by hand)
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Performance of Perseus policies vs. heuristics
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Moving to a “real” turbulent flow
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The DNS

3-D incompressible Navier-Stokes with mean wind V on
1024× 512× 512 grid in turbulent regime Reλ ≃ 150

Periodic BCs, stochastic large-scale forcing

Lagrangian particles emitted simultaneously from point
sources at 5 locations, data dumped every τη (∼ 4000τη total)

Have data for 5 different mean flow speeds
(V /ṽ ≃ 0, 1.5, 3, 6, 9)
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Coarse-graining

To move to POMDP setting, data are coarse-grained on a
quasi-2D slice to obtain 99× 33 grid with spacing ∼ 10η

Particles counted to obtain concentration field
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Empirical likelihood

Define cthr ≫ ⟨c|c > 0⟩
Pr(o|s) ≡ Pr(c(s) ≥ cthr) averaged over time and source locations,
symmetrized across wind axis

Use SARSOP to solve for policy using either empirical likelihood or fit to
model

Figure Empirical log10-likelihood of observation for cthr = 100, V/ṽ ≃ 9
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Searching in the DNS: near-optimal vs. heuristics
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Arrival time statistics for V /ṽ ≃ 9
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Figure Arrival time pdfs for searching in the source
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Optimal behaviors

Near-optimal policies exhibit behaviors seen in real moths. As time
since last encounter grows, agent zigzags cross-wind with
increasing amplitude. Eventually turns downwind to avoid missing
the source

Figure Downwind motion in
silkworm flight after odor loss
[Willis and Arbas, 1991]
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Correlations

Real flows are not Markovian: due to spatial structure of
puffs, consecutive observations usually positively correlated

Correlation strength sensitive to flow speed, plume shape, cthr

Define α ≡ logPr(ot=1|ot−1=1,s,a)
logPr(ot=1|,s,a) so that α < 1 =⇒

correlated, α > 1 =⇒ anticorrelated

Rescale flow time t → ct
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Correlations in the POMDP

In principle, POMDP can accommodate arbitrary correlations
by augmenting state space s → s ⊗ ot−1 ⊗ · · · ⊗ ot−k

Affects both Bayes inference and optimization (solution of
Bellman)

But makes problem exponentially harder computationally

Q: does minimal extension (k = 1) improve search
performance? i.e. exponentially decaying correlations
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Artificial correlations

Control correlations by hand: impose log likelihood ratio α
artificially, constant over x and actions

Fix unconditioned likelihood to that obtained empirically. Law
of total probability Pr(A) =

∑
B Pr(A|B)P(B) then sets

conditional likelihoods

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

m
ea

n 
ar
riv

al
 ti
m
e

correlation-oblivious
correlation-aware Takeaway: correlations

make searching harder.
Only partially mitigated by
including them in
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inference
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Searching in a slower flow

Now, modify correlations by changing flow speed tflow → ctflow
As flow slows down agent has more time to see spatial
structure of odor dispersal

Uncorrelated for c → ∞, frozen flow with strong corr. for
c → 0
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Figure Mean arrival times w/ and w/o correlation sensitiv-
ity. Non-monotonic behavior?
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Effect of correlations

What’s going on? Correlations impact convergence rate of
posterior

b(s) =
exp

(∑N
t=1 λt

)
b0(s)∑

s exp
(∑N

t=1 λt

)
b0(s)

where λt = log ℓ(ot |s) and ℓ is likelihood under agent’s model

By Law of Large Numbers
∑N

t=1 λt → NE [λ]

Can show using Chebyshev’s inequality that for x > 0

Pr

(∣∣∣∣∣ 1N ∑
t

λt − E [λ]

∣∣∣∣∣ ≥ x

)
≤ 2C

Nx2

where C =
∑∞

t=1Cov(λt , λ1).
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Effect of correlations (cont’d)

Thus C =
∑∞

t=1Cov(λt , λ1) sets typical time to converge
(along with spatial structure of λ)

C increases (decreases) when positive (negative) correlations
are turned on and agent is unaware

If agent is aware, situation is less clear, but frequently find
that Cuncorr . < Caware < Cunaware (for positive corr.)

This accounts for behavior seen in mean arrival time
performance. Nonmonotonic effect explainable by negative
correlations close to source, which this argument shows are
helpful
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Conclusion

Tracking a source in turbulence is hard because there are no
gradients

POMDP formalizes difficult problem into something we can
solve

Optimal strategies for realistic flows resemble search
trajectories observed in real animals

Correlations in real flows can impede Bayesian search by
slowing the convergence of the posterior
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