Results and perspectives in $\beta\beta$ decay experiments by the DAMA-Kyiv Collaboration with HPGe
DAMA: an observatory for rare processes @LNGS
Collaboration

Roma Tor Vergata, Roma La Sapienza, LNGS, IHEP/Beijing

+ by-products and small scale experiments (MoU): INR-Kyiv

+ in some studies on $\beta\beta$ decays
(DST-MAE projects, inter-univ. Agreeem.): IIT Ropar/Kharagpur, India

+ in some activites collaborators from

Ukraine
- Kyiv National Taras Shevchenko University
- National Science Center Kharkiv Instit. of Physics and Technology;
- Institute for Scintillation Materials, Ukraine

Russia
- Russian Chemistry-Technological University of D.I.Mendeleev
- Moscow Joint Institute for Nuclear Research, Dubna;
- Joint stock company NeoChem, Moscow
- Nikolaev Inst. of Inorganic Chemistry, Novosibirsk;
- Institute of Theoretical and Experimental Physics, Moscow

Australia
- Department of Applied Physics, Curtin University, Perth

Finland
- Dept. of Physics, University of Jyvaskyla, Jyvaskyla
Summary of searches for $\beta\beta$ decay modes in various isotopes (partial list)

- Many competitive limits obtained on lifetime of $2\beta^+$, $\epsilon\beta^+$ and 2ϵ processes
 - $(^{40}\text{Ca}, ^{64}\text{Zn}, ^{96}\text{Ru}, ^{106}\text{Cd}, ^{108}\text{Cd}, ^{130}\text{Ba}, ^{136}\text{Ce}, ^{138}\text{Ce}, ^{180}\text{W}, ^{190}\text{Pt}, ^{184}\text{Os}, ^{156}\text{Dy}, ^{158}\text{Dy}, ...)$.

- First searches for resonant $2\epsilon0\nu$ decays in some isotopes

ARMONIA: New observation of $2\nu2\beta^- ^{100}\text{Mo} \rightarrow ^{100}\text{Ru}$ (g.s.$\rightarrow 0_1^+$) decay
 - NPA846 (2010)143

AURORA: New observation of $2\nu2\beta^- ^{116}\text{Cd}$ decay

DAMA

- Previous limits
- DAMA observed 90% C.L.
DAMA/Ge and LNGS STELLA facility

Ge detectors used by DAMA in previous searches:

DAMA/Ge (GeBer)
- 244 cm³ n-type HPGe detector
- Thin Carbon window: 0.76 mm thickness

GeCris
- 465 cm³ p-type HPGe detector
- Thin Cu window: 1 mm thickness

GeMulti
- Four 225 cm³ p-type HPGe detectors mounted in one cryostat with a well in the center
- Thin Al window: 1.3 mm thickness

GeBEGe
- Broad Energy Ge detector (especially designed for low energy γ spectrometry)
- Thin Cu window: 1.5 mm thickness

DAMA results
- Search for ββ decays of many candidate isotopes (next slide)
- Search for ⁷Li solar axions (NPA806(2008)388, PLB711(2012)41)
- First observation of α decay of ¹⁹⁰Pt to the first excited level of ¹⁸⁶Os (PRC83(2011)034603)

Typical shield from environmental radioactivity
- 5-10 cm of OFHC copper
- 5 cm of low activity lead (< 3 Bq/kg of ²¹⁰Pb)
- 15-25 cm of lead
- 10 cm of borated polyethylene (GeBer)
- Air-tight PMMA box flushed with HP nitrogen
First or improved results for 2β decays of many isotopes

^{136}Ce $Q_{\beta\beta}=2378.55$ keV; 2ε, $\varepsilon\beta^+$, $2\beta^+$; ^{138}Ce $Q_{\beta\beta}=691$ keV; 2ε

- CeO$_2$ sample (627 g) in GeCris detector (2299 h) \Rightarrow $T_{1/2}$ limits: 10^{17}-10^{19} yr [Eur. Phys. J. A 53 (2017) 172]
- CeO$_2$ sample (732 g) in GeCris detector (1900 h) \Rightarrow $T_{1/2}$ limits: 10^{17}-10^{18} yr [Nucl. Phys. A 930 (2014) 195]
- CeCl$_3$ crystal (6.9 g) in DAMA/Ge detec. (1280 h) \Rightarrow $T_{1/2}$ limits: $(1\div6)10^{15}$ yr [Nucl. Phys. A 824 (2009) 101]

^{106}Cd $Q_{\beta\beta}=2775.39$ keV; 2ε (res 0ν), $\varepsilon\beta^+$, $2\beta^+$

- $^{106}\text{CdWO}_4$ crystal scintillator (216 g) in GeMulti (13085 h) \Rightarrow $T_{1/2}$ limits: 10^{20}-10^{21} yr [Phys. Rev. C 93 (2016) 045502]

^{96}Ru $Q_{\beta\beta}=2714.51$ keV; 2ε (res 0ν), $\varepsilon\beta^+$, $2\beta^+$; ^{104}Ru $Q_{\beta\beta}=1301.2$ keV; $2\beta^-$

- Purified Ru samples in GeMulti det. (0.56kg\timesyr) \Rightarrow $T_{1/2}$ limits: 10^{20}-10^{21} yr [Phys. Rev. C 87 (2013) 034607]
- Ru sample (473 g) in GeCrys detector (158 h) \Rightarrow $T_{1/2}$ limits: 10^{18}-10^{19} yr [Eur. Phys. J. A 42 (2009) 171]

^{184}Os $Q_{\beta\beta}=1453.7$ keV; 2ε (res 0ν), $\varepsilon\beta^+$; ^{192}Os $Q_{\beta\beta}=412.4$ keV; $2\beta^-$

- Os sample (173 g) in GeCris detector (2741 h) \Rightarrow $T_{1/2}$ limits: 10^{16}-10^{17} yr for ^{184}Os and 10^{19} yr for ^{192}Os [Eur. Phys. J. A 49 (2013) 24]

^{190}Pt $Q_{\beta\beta}=1383$ keV; 2ε (res 0ν), $\varepsilon\beta^+$; ^{198}Pt $Q_{\beta\beta}=1049$ keV; $2\beta^-$

- Pt sample (42.5 g) in GeCris detector (1815 h) \Rightarrow $T_{1/2}$ limits: 10^{14}-10^{16} yr for ^{190}Pt and 10^{18} yr for ^{198}Pt [Eur. Phys. J. A 47 (2011) 91]

^{156}Dy $Q_{\beta\beta}=2005.95$ keV; 2ε, $\varepsilon\beta^+$; ^{158}Dy $Q_{\beta\beta}=282.7$ keV; 2ε

- Dy$_2$O$_3$ sample (322 g) in DAMA/Ge det. (2512 h) \Rightarrow $T_{1/2}$ limits: 10^{14}-10^{16} yr [Nucl. Phys. A 859 (2011) 126]

^{100}Mo $Q_{\beta\beta}=3035$ keV; $2\beta^-$

- $^{100}\text{MoO}_3$ sample (1199 g) enriched in ^{100}Mo at 99.5% in GeMulti detector
 \Rightarrow observation of $^{100}\text{Mo} \rightarrow^{100}\text{Ru}(0^+)$ decay: $T_{1/2} = 6.9^{+1.0}_{-0.8}(\text{stat}) \pm 0.7(\text{syst}) \times 10^{20}$ yr [Nucl. Phys. A 846 (2010) 143]

The best experimental sensitivities in the field for 2β decays with positron emission
In addition to the transition to the g.s., the $2\beta 2\nu$ decay of 100Mo was registered also for the transition to the first excited 0^+_{1} level of 100Ru.

If 0^+_{1} excited level of 100Ru ($E=1130$ keV) populated, two γ quanta (591 keV + 540 keV) emitted in cascade.

100MoO$_3$ sample (mass =1199 g) enriched in 100Mo at 99.5% installed in GeMulti setup.

Table: $T_{1/2}$ measured in several experiments:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>$T_{1/2}$, 10^{20} yr</th>
<th>Year [Ref.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frejus UL (4800 m w.c.), HP Ge 100 cm3, 994 g of 100Mo (99.5%), 2298 h, only 1-d spectrum;</td>
<td>> 12</td>
<td>1992 [19]</td>
</tr>
<tr>
<td>Shudan mine (2090 m w.c.), HP Ge 114 cm3, 956 g of 100Mo (98.5%), 9970 h, 1-d spectrum;</td>
<td>$6.1^{+1.8}_{-1.1}$</td>
<td>1995 [11]a</td>
</tr>
<tr>
<td>Modane UL (4800 m w.c.), 4 HP Ge detectors (100, 120, 380, 400 cm3), 17 different 100Mo samples (107–1005 g, 95.1–99.3%, 142–1599 h), sum of 1-d spectra;</td>
<td>$9.3^{+2.8}_{-1.7}$</td>
<td>1999 [14]</td>
</tr>
<tr>
<td>Modane UL (4800 m w.c.), NEMO-3 detector, 6914 g of 100Mo foils in 12 sectors (95.1–98.9%), 8024 h, individual energies of γ and e^-, tracks for e^-;</td>
<td>$5.7^{+1.5}_{-1.2}$</td>
<td>2007 [15]</td>
</tr>
<tr>
<td>Ground level (10 m w.c.), 2 HP Ge detectors (300 cm3) in coincidence, 1050 g of 100Mo (98.4%), 21720 h, coincidence spectrum;</td>
<td>$5.5^{+1.2}_{-0.9}$</td>
<td>2009 [16]b</td>
</tr>
<tr>
<td>Gran Sasso UL (3600 m w.c.), 4 HP Ge detectors (225 cm3 each) in coincidence, 1199 g of 100MoO$_3$ (99.5%), 18120 h, coincidence and 1-d spectra;</td>
<td>$6.9^{+1.2}_{-1.1}$</td>
<td>This work</td>
</tr>
</tbody>
</table>

Aim of the experiment: remeasurement of the Mo sample used before in the Frejus exp. (not in agreement with other results)
1-dimensional energy spectrum analysis

Both peaks at 540 keV and 591 keV expected for \(2\beta2\nu\) decay \(^{100}\text{Mo} \rightarrow ^{100}\text{Ru}(0_{1}^{+})\) are observed in the data collected with \(^{100}\text{MoO}_{3}\).

In the background spectrum they are absent.

Fit of peak @ 539.5 keV: \(E=539.4\pm0.2\) keV; \(S_{540}=319\pm56\) events

Fit of peak @ 590.8 keV: \(E=590.9\pm0.2\) keV; \(S_{591}=278\pm53\) events

\[T_{1/2} = 6.9^{+1.0}_{-0.8} \text{(stat.)} \pm 0.7 \text{(syst.)} \times 10^{20} \text{ yr.}\]

Most of systematic unc. due to calculation of the efficiencies

2-dimensional energy spectrum analysis

Double coincidences when fixing the energy of one of the Ge detectors.

Eight events detected (red)

\[T_{1/2} = 6.8^{+3.7}_{-1.8} \text{(stat.)} \times 10^{20} \text{ yr}\]

in agreement with the half life derived in 1-d analysis
Search for $\beta\beta$ decay in 106Cd with 106CdWO$_4$ scintillator in coincidence with 4 HPGe (GeMulti)

106Cd, a promising isotope:

- One of the six isotopes candidate for $2\beta^+$ decay
- $\delta = (1.25\pm0.06)\% \Rightarrow$ possible enrichment up to 100%
- $Q_{2\beta} = (2775.39\pm0.10)$ keV $\Rightarrow 2\beta^+, \epsilon\beta^+, 2\epsilon$ modes possible
- Possible resonant $2\epsilon0\nu$ captures to excited level of 106Pd
- Theoretical $T_{1/2}$ favorable for some 2ν modes ($10^{20} - 10^{22}$ yr)

106CdWO$_4$ crystal scintillator:

- Mass: 216 g, 66.4\% enrichment in 106Cd
- Good scintillation properties
- Active source approach (high detection efficiency)
- Low levels of internal contamination in (U, Th K)
- α/β discrimination capability

PbWO$_4$ light-guide ($\varnothing 40 \times 83$ mm)

Reduce PMT background (archaeol. lead: $A(^{210}\text{Pb})<0.3$ mBq/kg)
106CdWO\textsubscript{4} crystal scintillator in GeMulti: Results

1. In anticoincidence with the HPGe detectors (AC)
2. In coincidence with \(E_{\text{HPGe}} > 200\) keV (CC >200)
3. In coincidence with \(E_{\text{HPGe}} = 511\) keV (CC 511)
4. In coincidence with \(E_{\text{HPGe}} = 1160\) keV (CC 1160)

Energy spectrum of 106CdWO\textsubscript{4} detector in coincidence with 511 keV in HPGe (circles). Monte Carlo simulated distributions of 2\(\beta\) decay of 106Cd excluded at 90% CL

- New limits on 2\(\epsilon\), \(\epsilon\beta^+\), 2\(\beta^+\) processes on the level of \(T_{1/2} > 10^{20} - 10^{21}\) yr
- The half-life limit on the \(\epsilon\beta^+2\nu\) decay, \(T_{1/2} > 1.1 \times 10^{21}\) yr, reached the region of theoretical predictions
- For 2\(\epsilon0\nu\) resonant captures: \(T_{1/2} > (8.5 \times 10^{20} - 1.4 \times 10^{21})\) yr
New $^{106}\text{CdWO}_4$ experiment in DAMA/Crys set-up

1) New experiment with $^{106}\text{CdWO}_4$ in (anti)coincidence with two large CdWO$_4$ scintillators mounted in DAMA/Crys set-up @ LNGS

2) High efficiency

3) Experiment in data taking since May 2016
New limits on $2\beta^+$ decay of 136Ce and 138Ce with deeply purified cerium sample

Ce purification performed by the liquid-liquid extraction method

- thorium concentration reduced by a factor ≈ 60
- improved 2β sensitivity \approx one order of magnitude

The sample of deeply purified CeO$_2$ (627 g) was placed on the endcap of GeCris detector ($T=2299$ h)

No peculiarities in CeO$_2$ spectrum can be ascribed to 2β decay of 136Ce or 138Ce

\Rightarrow New improved half-life limits: $T_{1/2} > 10^{17}$–10^{19} yr

NB:

Cerium purification is also motivated in the light of radiopure crystal scintillators development; In fact, Ce is used

- to develop Ce-containing crystal scintillators (e.g., CeF$_3$, CeCl$_3$)
- as a dopant in inorganic scintillators as Gd$_2$SiO$_5$(Ce), YAlO$_3$(Ce), LaBr$_3$(Ce)

Table:

<table>
<thead>
<tr>
<th>Chain Nuclide</th>
<th>Activity (mBq kg$^{-1}$) before purification</th>
<th>after 1st purification</th>
<th>after 2nd purification</th>
</tr>
</thead>
<tbody>
<tr>
<td>40K</td>
<td>77 (28)</td>
<td>≤ 9</td>
<td>≤ 4</td>
</tr>
<tr>
<td>137Cs</td>
<td>≤ 3</td>
<td>≤ 2</td>
<td>0.4 ± 0.2</td>
</tr>
<tr>
<td>138La</td>
<td>≤ 0.7</td>
<td>≤ 0.6</td>
<td>≤ 0.2</td>
</tr>
<tr>
<td>139Ce</td>
<td>6 ± 1</td>
<td>1.4 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>152Eu</td>
<td>≤ 0.5</td>
<td>≤ 0.2</td>
<td></td>
</tr>
<tr>
<td>154Eu</td>
<td>≤ 0.9</td>
<td>≤ 0.08</td>
<td></td>
</tr>
<tr>
<td>176Lu</td>
<td>≤ 0.5</td>
<td>0.4 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>232Th</td>
<td>850 ± 50</td>
<td>53 ± 3</td>
<td>30.4 ± 0.7</td>
</tr>
<tr>
<td>228Th</td>
<td>620 ± 30</td>
<td>573 ± 17</td>
<td>9.8 ± 0.5</td>
</tr>
<tr>
<td>235U</td>
<td>38 ± 10</td>
<td>≤ 1.8</td>
<td>≤ 0.4</td>
</tr>
<tr>
<td>231Pa</td>
<td>≤ 24</td>
<td>≤ 0.4</td>
<td></td>
</tr>
<tr>
<td>227Ac</td>
<td>≤ 3</td>
<td>≤ 1.4</td>
<td></td>
</tr>
<tr>
<td>238U</td>
<td>≤ 870</td>
<td>≤ 40</td>
<td>≤ 12</td>
</tr>
<tr>
<td>226Ra</td>
<td>11 ± 3</td>
<td>≤ 1.5</td>
<td>≤ 0.3</td>
</tr>
</tbody>
</table>
Running and future experiments

- Experiment running since February 2015 with deeply purified Nd$_2$O$_3$ sample (2381 g) in GeMulti detector to investigate 2β decay of 150Nd to excited levels of 150Sm:
 - Background rate in the region of expected peaks (334.0 keV and 406.5 keV) ≈ 2 counts/keV/d
 - Expected $T_{1/2}$ sensitivity after 500 days of measurements: 1.3×10^{20} yr (90%CL)

- New experiment to search for 2β of osmium (and α decay of osmium to excited level of daughter nuclei) in progress with BEGe detector:
 - Detection efficiency significantly improved by cutting the osmium roads into thin (0.8-1 mm) plates and by using the BEGe detector

- Purification of Er, Yb, and Sm is in progress for experiments to search for resonant 2ε0ν processes in these nuclei
Conclusions

Many and competitive results have been obtained by the DAMA-Kyiv collab. in the search for $\beta\beta$ decays with HPGe detectors @ the STELLA facility of LNGS:

- First or improved limits on the half-lives of double beta decays of 96Ru, 104Ru, 106Cd, 112Sn, 124Sn, 136Ce, 138Ce, 156Dy, 158Dy, 184Os, 192Os, 190Pt and 198Pt

- The best experimental sensitivities in the field for 2β decays with positron emission (useful to distinguish the mechanism of neutrinoless 2β decay)

- Possible resonant $2\epsilon0\nu$ processes investigated in several candidate isotopes

- New observation of the $2\beta2\nu$ decay of 100Mo to the first excited 0^+_{1} level of 100Ru with the coincidence technique in the ARMONIA experiment

- New and competitive limits on 2ϵ, $\epsilon\beta^+$, $2\beta^+$ processes of 106Cd with a 106CdWO$_4$ detector in coincidence with 4 HPGe detectors ($T_{1/2} > 10^{20}$-10^{21} yr, reached the region of theoretical predictions for the $\epsilon\beta^+2\nu$ decay)