CdWO$_4$ crystal scintillators from enriched isotopes for double beta decay experiments

D.V.Poda1, A.S.Barabash2, P.Belli3, R.Bernabei3,4, R.S.Boiko1, V.B.Brudanin5, F. Cappella6,7, V.Caracciolo8,9, R.Cerulli8, D.M.Chernyak1, F.A.Danevich1, S.d'Angelo3, V.Ya.Degoda10, M.L.DiVacri8, A.E.Dossovitskiy11, E.N.Galashov12, A.Incicchitti6,7, V.V.Kobychev1, S.I.Konovalov2, G.P.Kovtun13, M.Laubenstein8, A.L.Mikhlin11, V.M.Mokina1, A.S.Nikolaiko1, S.Nisi8, R.B.Podviyanuk1, O.G.Polischuk1, A.P.Shcherban13, V.N.Shlegel12, D.A.Solopikhin13, Yu.G.Stenin12, V.I.Tretyak1, V.I.Umatov2, Ya.V.Vasiliev12, V.D.Virich13

1 Institute for Nuclear Research, Kyiv, Ukraine
2 Institute of Theoretical and Experimental Physics, Moscow, Russia
3 INFN, Section of Rome “Tor Vergata”, Rome, Italy
4 Department of Physics, University of Rome “Tor Vergata”, Rome, Italy
5 Joint Institute for Nuclear Research, Dubna, Russia
6 INFN, Section of Rome “La Sapienza”, Rome, Italy
7 Department of Physics, University of Rome “La Sapienza”, Rome, Italy
8 INFN, Gran Sasso National Laboratories, Assergi (Aq), Italy
9 Department of Physics, University of L'Aquila, L'Aquila, Italy
10 Kyiv National Taras Shevchenko University, Kyiv, Ukraine
11 Joint Stock Company NeoChem, Moscow, Russia
12 Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia
13 NSCenter Kharkiv Institute of Physics and Technology, Kharkiv, Ukraine
Double beta (2β) decay

- Nuclear transformations when the charge of nuclei changes by two units: $(A, Z) \rightarrow (A, Z \pm 2)$

- 2β decay was registered for only 12 nuclides (from 69 2β-candidates)

- The rarest nuclear decay ever observed (half-lives $T_{1/2} \sim 10^{18} \text{–} 10^{24}$ yr)

- Could help to clarify the fundamental problems in particle physics:
 - Lepton number violation
 - Nature of neutrino (Dirac or Majorana particle)
 - Hierarchy of neutrino mass
 - Absolute scale of neutrino mass
 - Other effects beyond the Standard Model of particles

- Scintillation counting is one of the most sensitive techniques for 2β decay search
Enriched scintillators for 2β decay search

<table>
<thead>
<tr>
<th>Year</th>
<th>Scintillator</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966</td>
<td>48CaF$_2$(Eu) (δ=97%, m=22 g)</td>
<td>[1]</td>
</tr>
<tr>
<td></td>
<td>40CaF$_2$(Eu) (δ=97%, m=22 g)</td>
<td></td>
</tr>
<tr>
<td>1987 – 2003</td>
<td>116CdWO$_4$ (δ=83%, m=510 g)</td>
<td>[2]</td>
</tr>
<tr>
<td>2009 – present</td>
<td>106CdWO$_4$ (δ=66%, m=231 g)</td>
<td>[3]</td>
</tr>
<tr>
<td>2010 – present</td>
<td>116CdWO$_4$ (δ=82%, m=1868 g)</td>
<td>[4]</td>
</tr>
<tr>
<td>2010 – present</td>
<td>40Ca100MoO$_4$ (δ=96% of 100Mo, δ=99.964% of 40Ca depleted on 48Ca, m=550 g)</td>
<td>[5]</td>
</tr>
<tr>
<td>2013 – 2014</td>
<td>100MoO$_4$, 82Se</td>
<td>[6,7]</td>
</tr>
</tbody>
</table>

Why are 106,116Cd promising for 2β search?

- **Very high 2β decay energy**
 \(Q_{2\beta} = 2770\) keV for 106Cd and 2813 keV for 116Cd)

- **Relatively large isotopic abundance**
 \(\delta = 1.25\%\) for 106Cd and 7.49\% for 116Cd)

- **Promising theoretical estimations on 2β decay of 106,116Cd**

- **CdWO$_4$ – good detector for 2β decay search** [1,2]
 - a) calorimetric “source = detector” experiment
 - b) low level of intrinsic radioactivity
 - c) good scintillation properties
 - d) pulse-shape discrimination ability
 - e) relatively inexpensive
 - f) stability for long term operation

- **Availability of raw materials enriched in 106,116Cd**

Refs.:
Specific demands for production of enriched scintillators for 2β experiments

- Minimal loss of expensive isotopically enriched materials
- High yield of crystals
- Prevention of radioactive contamination
Steps of 106,116CdWO$_4$ productions

Raw material (W)

Production of 106,116CdWO$_4$ powder

ICP-MS
L-MS
AAS

Raw material (106,116Cd)

Pure 106,116Cd metal

Vacuum distillation of 106,116Cd metal

Crystal growth

Treatment

106,116CdWO$_4$
Deep purification of enriched $^{106,116}\text{Cd}$

Vacuum distillation with use of getter filters

It allows to purify the enriched $^{106,116}\text{Cd}$ isotopes on the level of 1–0.1 ppm:

<table>
<thead>
<tr>
<th>Impurities</th>
<th>Level, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni, Cu</td>
<td>< 0.2</td>
</tr>
<tr>
<td>Fe, Mg, Mn, Cr, V, Co</td>
<td>< 1</td>
</tr>
<tr>
<td>Th, U, Ra, K, Rb, Bi, Pb, Lu, Sm</td>
<td>< 0.1</td>
</tr>
</tbody>
</table>

Main advantages:
- high effectiveness of purification
- higher yield of end product (> 96% of original charge)
- minimum irrecoverable losses of material (< 1–2 %)

Synthesis of 106,116CdWO$_4$ powders

Choice of the methods for 106,116Cd additional purification:

- Recrystallization methods (used for Cd salts)? NO
 - Low outcome of the final product (< 85%)

- Coprecipitation of impurities in cadmium nitrate on a collector!
 + Recrystallization of ammonium para-tungstate

$$
\text{Cd(NO}_3\text{)}_2 + (\text{NH}_4\text{)}_2\text{WO}_4 \xrightarrow{t^\circ} \text{CdWO}_4 + 2\text{NH}_4\text{NO}_3
$$
Growth of 106,116CdWO$_4$ scintillators

Low-Thermal-Gradient Czochralski technique (LTG Cz)

231 g, $\varnothing 27 \times 60$ mm

1868 g, $\varnothing 45 \times 147$ mm

87% of initial charge

while for Cz only ~ 30

216 g, $\varnothing 27 \times 50$ mm

82%

70%

of initial charge

Characterization of 106,116CdWO$_4$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuation length @ 480 nm</td>
<td>(60 ± 7) cm *</td>
<td>(31 ± 5) cm</td>
</tr>
<tr>
<td>FWHM (CWO on PMT) @ 662 keV of 137Cs</td>
<td>10.0%</td>
<td>10.1%</td>
</tr>
<tr>
<td></td>
<td>@ 2615 keV of 208Tl</td>
<td>8.4% **</td>
</tr>
<tr>
<td>Enrichment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Isotopic abundance in natCd)</td>
<td>66.4% of 106Cd (1.25%)</td>
<td>82.2% of 116Cd (7.49%)</td>
</tr>
</tbody>
</table>

* – Never reported for CdWO$_4$

** – FWHM that was reached in 2β experiment

Search for 2β processes in 106,116Cd

DAMA R&D set-up, Laboratori Nazionali del Gran Sasso (Italy)

Radioactive contamination of 106,116CdWO$_4$ crystals

<table>
<thead>
<tr>
<th>Source</th>
<th>Activity in $^{106/116}$CdWO$_4$, mBq/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>116CWO [1]</td>
</tr>
<tr>
<td></td>
<td>116CWO [1] /Scraps</td>
</tr>
<tr>
<td></td>
<td>116CWO [2]</td>
</tr>
<tr>
<td></td>
<td>106CWO [3]</td>
</tr>
<tr>
<td></td>
<td>scintillation mode by HPGe detector</td>
</tr>
<tr>
<td>scint.</td>
<td>scint. mode</td>
</tr>
<tr>
<td>scint.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>232Th</td>
<td>≤ 0.08</td>
</tr>
<tr>
<td>228Ra</td>
<td>≤ 0.2</td>
</tr>
<tr>
<td>228Th</td>
<td>$0.041(6) - 0.072(8)$</td>
</tr>
<tr>
<td>227Ac</td>
<td>≤ 0.002</td>
</tr>
<tr>
<td>$^{238+234}$U</td>
<td>$\leq (0.4 - 0.6)$</td>
</tr>
<tr>
<td>226Ra</td>
<td>≤ 0.005</td>
</tr>
<tr>
<td>$\Sigma \alpha$</td>
<td>$2.1(2) - 2.9(3)$</td>
</tr>
<tr>
<td>40K</td>
<td>≤ 0.9</td>
</tr>
<tr>
<td>110mAg</td>
<td>$0.12(4)$</td>
</tr>
<tr>
<td>113Cd</td>
<td>$100(10)$</td>
</tr>
<tr>
<td>113mCd</td>
<td>$460(20)$</td>
</tr>
<tr>
<td>137Cs</td>
<td>≤ 0.3</td>
</tr>
<tr>
<td></td>
<td>$\leq 31 / \leq 38$</td>
</tr>
<tr>
<td></td>
<td>$\leq 3.1 / 64(4)$</td>
</tr>
<tr>
<td></td>
<td>$1.4(1)$</td>
</tr>
<tr>
<td></td>
<td>$2.1(2)$</td>
</tr>
<tr>
<td></td>
<td>$0.3(1)$</td>
</tr>
<tr>
<td></td>
<td>$91(5)$</td>
</tr>
<tr>
<td></td>
<td>$1.1(1)$</td>
</tr>
<tr>
<td></td>
<td>$0.43(6)$</td>
</tr>
<tr>
<td></td>
<td>≤ 1.4</td>
</tr>
<tr>
<td></td>
<td>≤ 0.06</td>
</tr>
<tr>
<td></td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>$116(4) \times 10^{3}$</td>
</tr>
</tbody>
</table>

Results of 2β-experiments with $^{106,116}\text{CdWO}_4$

$^{106}\text{CdWO}_4$, 215 g, 6590 h [1]

$^{116}\text{CdWO}_4$, 1.16 kg, 7593 h [2]

$T_{1/2}$ (2β, $^{106}\text{Cd}\rightarrow^{106}\text{Pd}$) $\geq 10^{19-21}$ yr

27 new results for 2β ^{106}Cd

9 of them – for the first time

$T_{1/2}$ ($2\nu2\beta$) = 2.5(5)$\times10^{19}$ yr

$T_{1/2}$ (2β to $^{116}\text{Sn}^*$) $\geq 10^{21}$ yr

6 new results for 2β ^{116}Cd

[2] A.S. Barabash et al., Talk at Int. Conf. NPAE-2012, September 03–07, Kyiv, Ukraine
Search for 2β-decay of ^{106}Cd, stage 2

Experiment is in preparation:

$^{106}\text{CdWO}_4$ in coincidence / anticoincidence with 4-crystals HPGe detector

Registration efficiency $\sim (3\text{–}8)\%$

Expected background – a few counts/yr

$^{106}\text{CdWO}_4$ in coincidence / anticoincidence with 4-crystals HPGe detector

Registration efficiency $\sim (3\text{–}8)\%$

Expected background – a few counts/yr

PbWO$_4$ (from low radioactive lead)
HPGe 225 cm3
PMT

Sensitivity to $2\nu\, \epsilon\beta^+$ and $2\beta^+$ of ^{106}Cd:

$T_{1/2} \sim (1\text{–}10)\times10^{20}$ yr

Theory [1-4]:

$2\nu2K$
$1(\text{–} 50)\times10^{20}$ yr

$2\nu\epsilon\beta^+$
$(8 \text{–} 400)\times10^{20}$ yr

Summary

• Enriched CdWO₄ scintillators have been developed: ¹⁰⁶CdWO₄ (231 g; 66% of ¹⁰⁶Cd) & ¹¹⁶CdWO₄ (1.9 kg; 82% of ¹¹⁶Cd)

• The total irrecoverable loss of the enriched cadmium on the all stages of ¹⁰⁶,¹¹⁶CdWO₄ development does not exceed 3%

• The produced ¹⁰⁶,¹¹⁶CdWO₄ scintillators exhibit excellent optical and scintillation properties, and high level of radiopurity. Low segregation of Th and Ra by CdWO₄ was observed

• Double beta (2β) experiments using ¹⁰⁶,¹¹⁶CdWO₄ were realized at the Gran Sasso underground laboratory (Italy). Measurements with ¹¹⁶CdWO₄ are in progress. A next step experiment “¹⁰⁶CdWO₄ in 4-crystals HPGe” is in preparation

• By analyzing the accumulated data, the new half-life ($T_{1/2}$) limits on 2β decay of ¹⁰⁶,¹¹⁶Cd were set at $\text{lim} T_{1/2} \sim 10^{19-21}$ yr, $2\nu 2\beta$ decay of ¹¹⁶Cd was measured with $T_{1/2} = (2.5\pm0.5)\times10^{19}$ yr