Search for Axions Emitted in Solar pp-Cycle by 7Li*

1Dipartimento di Fisica, Università di Roma “Tor Vergata” and INFN, Rome, Italy
2INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy
3Institute for Nuclear Research, Kyiv, Ukraine
4Dipartimento di Fisica, Università di Roma “La Sapienza” and INFN, Rome, Italy
5Institute for Scintillation Materials, Kharkiv, Ukraine

NPAE 2008 Kiev 13.06.2008
• Axions
 • Sun as a source of axions (Primakoff effect, thermally excited lines, 7Li line)
 • Resonant absorption of axion
• Description of the experiment
• Results
• Further improvements
• Conclusions
Axion:

- hypothetical neutral pseudoscalar particle;
- predicted by Peccei, Quinn, Weinberg and Wilczek to solve the problem of strong CP violation;
- weakly interacts with ordinary matter;
- no \textit{a priori} predictions of mass and coupling (but $m_a \sim 1/f_a$);
- a good candidate for particles of cold dark matter;
- have to be emitted by the solar core.
- can be coupled to hadrons.
Solar axions: continuous part of spectrum
(Primakoff conversion of photon to axion in electric field of a nucleus)
Monoenergetic lines should also exist in the spectrum of solar axions.
The technique was proposed by Moriyama [PRL 75 (1995) 3222]. Other naturally occurring isotopes with low-lying levels deexcitating via M1 transitions are applicable in this technique; for example, ^{83}Kr (9.4 keV).
\(^{57}\text{Fe} ('\text{iron}' \text{ solar axion}) \text{ allows to exclude values of mass of axion between } \sim 14.4 \text{ keV and (best current value) 0.216 keV [T. Namba, PLB 645 (2007) 398]}.\)

Other possibility – non-thermal excitation of source nuclei.

\(^7\text{Li} \text{ is created in } pp\text{-chain (the main energy source of the Sun).}\)
1. Population of the level via electron capture in 7Be
2. Emission of a monoenergetic axion
3. Resonant excitation by the axion
4. Emission of a gamma
5. Detection

First experiment: M. Krcmar et al. [PRD 64 (2001) 115016] $(m_a < 32 \text{ keV})$.
Best limit: A.V. Derbin et al. [JETP Lett. 81 (2005) 365] $(m_a < 16 \text{ keV})$.
Our experiment:

1. Lithium fluoride (LiF) was taken as a target due to:
 a) its high density of Li nuclei in comparison to other Li compounds;
 b) chemical passivity;
 c) non-hygroscopicity.

2. Few samples of LiF (powder of 99.99% purity, single crystal) were placed in two HPGe detectors in Laboratori Nazionali del Gran Sasso (3800 m w.e.).
The best limit on the axion mass was obtained with a powder sample of 243 g measured during 722 h with HPGe detector GSOR.
If we would observe a gamma peak at 478 keV with area S, mass of axion would be

$$m_a = 1.55 \times 10^{11} \times \left(\frac{S}{\varepsilon t N_7}\right)^{1/4} \text{ eV}$$

ε – efficiency of the detector,
t – time of measurement,
N_7 – number of ^7Li nuclei in the sample.

$m_a < 13.9 \text{ keV} \ (90\% \ C.L.)$
But the radiopurity of this sample was not good. U/Th activity is ~0.1-0.6 Bq/kg in both the powder samples, whereas the crystal sample is <0.02 Bq/kg.
LiF crystal 224 g

Counts/1 keV

Energy (keV)

Counts/1 keV

Energy (keV)
As the single crystal LiF target is much less contaminated by U/Th daughters than the powder samples, we prepared a new crystal of LiF with mass of ~550 g. It will improve the sensitivity of the next stage of the experiment which is to start soon.
LiF(W) single crystals

Total mass is ~550 g.
Conclusions

1. Search for solar 7Li axion was performed in LNGS with LiF targets.
2. No peaks in the region of interest were found.
3. Upper limit on mass of hadronic axion was set: $m_a < 13.9$ keV. It closes the existing window of possible axion masses between the previous experimental limit (of 16.0 keV) and the 14.4 keV energy of the next potential source of quasi-monochromatic solar axions from 57Fe.
4. The sensitivity of the experiment will be improved by using the massive single crystal LiF target with good radiopurity.