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Introduction

In this thesis we present the motivations to study supersymmetric dark mat-
ter through indirect detection with γ-rays. This is a part of a very interesting
research area common to astrophysics, cosmology and fundamental particle
physics. There are many experimental evidences and extremely compelling
theoretical motivations for the existence of dark matter in the Universe. Our
knowledge of the matter and energy content of the Universe has been greatly
improving over the latest years. The picture emerging from recent data col-
lected with a number of complementary techniques seems to be remarkably
self-consistent, pointing at a flat Universe with about 70% of its present
average energy density in a cosmological constant term and about 30% in
non-relativistic matter. Recent measurements of the cosmic microwave back-
ground radiation indicate that the greater part of the non-relativistic matter
is of a non luminous form. One of the major challenges in physics, today, is
to understand the actual nature of this non luminous matter.

The plan of the thesis is the following: in chapter 1 we introduce the dark
matter problem as it arises from the observational point of view and we setup
the cosmological theoretical framework in which dark matter can be studied.
We also review the possible dark matter candidates, and we try to single
out the best motivated candidate. We see that weakly interacting massive
particles are among the leading dark matter candidates: they would naturally
appear as another of the thermal leftovers from the early Universe, and, at
the same time, their existence is predicted in several classes of extensions of
the Standard Model of particle physics.

In chapter 2 we just approach the fundamental particle physics side of
the problem. We start describing supersymmetric theories as possible exten-
sions of Standard Model. At the end we define the minimal supersymmetric
extension of the Standard Model.

In chapter 3 we introduce the powerful tool of the renormalization group
to show it is possible to obtain low energy predictions from a fundamental
high energy theory. We also describe a particular underlying theory, called
minimal supergravity, that allows to reduce the number of free parameters
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and so to simplify the phenomenological analysis. At the end we describe
the numerical procedure we have used to evolve, with renormalization group,
these high energy parameters to the low energy scale.

In chapter 4 we describe in details the best motivated candidates in the
context of R-parity conserving supersymmetric theories: the lightest neu-
tralino. We show the possible relevant neutralino interactions that allows for
an indirect detection.

Finally in the last chapter we analyze in details what can be learned of
the dark matter properties from the already available data coming from γ-
ray experiments and what we can expect from the upcoming experiments.
In particular we concentrate our attention on the γ-rays coming from the
Galactic Center that gives good chances to probe for supersymmetric dark
matter.
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Chapter 1

Dark Matter

1.1 Introduction

The dark matter problem is one of the most fascinating and intriguing issue
of a research area that resides at the intersection of both astrophysics and
fundamental particle physics.

Naively speaking, dark matter is a kind of a non luminous matter that
is present in the Universe, whose actual nature has to be yet determined.
The origin of the dark matter problem goes back to the early observations
of the mass to light ratios of galaxies [1]. The argument used there can be
formalized as follows. Given the numerical distribution of galaxies n(L) with
total luminosity L, one can compute the mean luminosity density of galaxies:

L =

∫
n(L)LdL (1.1)

which is experimental determined to be [2]:

L = 2 ± 0.2 · 108 hL� Mpc−3 (1.2)

where L� = 3.8 ·1033 erg s−1 is the solar luminosity and h is the present value
of the Hubble constant H0 parametrized in unit of 100 Km Mpc−1 s−1:

h =
H0

100 Km Mpc−1 s−1
(1.3)

One can define a critical density ρc = 3H2/8πGN , in terms of which it is
possible to define a critical mass-to-light ratio:

(
M

L

)
=
ρc

L ∼ 1390 h
M�

L�

(1.4)
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which, in turn, can be used to determine the cosmological matter density
parameter (see the following section for details):

Ωm =
ρ

ρc
=

(
M

L

)(
M�

L�

)−1

(1.5)

The mass-to-light ratios are strongly dependent on the distance scale on
which they are determined [3]. In the following table, we summarize the re-
sults on different distance scale, ranging from that of the solar neighborhood
to the largest scale of clusters of galaxies:

Distance scale M/L Ωm

Solar system 2 ± 1 (in solar unit) 0.001
Galaxies ∼ 10h 0.01
Small group of galaxies ∼ 100h 0.1
Clusters of galaxies ∼ 500h 0.3

It is well known that exists a strong limit on the amount of baryonic
matter coming from the primordial cosmological nucleosynthesis. In fact the
measured abundance of light elements (D, 3He, 4He and 7Li) is in the range

0.011 . ΩBh
2 . 0.025 (1.6)

where h = 0.72± 0.08 is the present Hubble constant [20], expressed in units
of 100 Km s−1 Mpc−1. The meaning of the Hubble constant will be described
in more details in the following section. The mechanism of the primordial
nucleosynthesis is very well explained in the context of the standard cosmo-
logical model. Thus, when we consider the scale of galaxies and larger in the
previous table, the presence of dark matter is required to taking into account
the discrepancy between Ωm and ΩB.

There are other observational evidences and theoretical motivations for
considering the existence of the dark matter. From the observational point
of view the most striking evidence comes from the rotation curves of the
spiral galaxies. In fact, it is possible to determine the rotational velocity vC

(C stands for circular) of the neutral hydrogen clouds inside a spiral galaxy
by measuring the 21-cm emission lines, shifted by the Doppler effect. The
result, when expressed as a function of the distance r from the center of
the galaxy, is that the velocity remains constant well beyond the point that
corresponds to the fall-off to zero of the luminous disk. In the case of the
NGC 6503 spiral galaxy this point is at r ' 2.5 Kpc. This can be seen in
figure 1.1. The experimental points clearly indicates that vC ∼ const. for
r & 2.5 Kpc. The sum of the contribution due to the observed disk and gas
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cannot give a proper fit of these points. If we assume that Newton laws hold
at the galactic scale1 then we have:

v2
C

r
=
M (r)

r2

where M (r) is the total mass contained inside a shell of radius r. Thus we
can see that r vC ∼ const. implies M (r) ∼ r that, in turn, implies that the
matter density scales as:

ρ(r) ∼ 1

r2

This is in contrast with the hypothesis that the bulk of the mass is luminous,
because in this case M(r) ∼ const. and v2 ∝ 1/r for r & 2.5. Hence in order
to fit the experimental data is necessary to introduce the contribution of a
dark halo. In figure 1.1 this contribution is shown as a dot-dash curve.

Another compelling evidence comes from the larger scales of clusters of
galaxies. In this case, the experimental data are available from strong grav-
itational lensing of a single background galaxy, of known red-shift, beyond a
cluster of galaxies [7]. Using the cluster gravitational lensing, the existence
of multiple images given by the same source at a known red-shift z allows
to calibrate in an absolute way the total cluster mass deduced from the lens
model. Hence having a physically motivated lens model, it is possible to
relate the total cluster mass to the cosmological parameters that enter in
a crucial way in the model definition. In this way it is possible to test the
overall geometry of the Universe and hence to constrain the values of Ωm and
ΩΛ, that are, respectively, the matter and cosmological constant contribution
to the total density of the Universe, and will be described in detail in the
following section. A different determination of Ωm and ΩΛ can be obtained
by the study of the relation between the luminosity distance dL(z) and the
red-shift z for a supernova sample at z . 1 and from measurements of the
cosmic microwave background (CMB) [8].

The last resort to get an estimation of Ωm on even larger scale is to study
the distribution of peculiar velocities of galaxies and clusters. On these scales,
there are measurements [9] that indicate a lower value for the overall matter
density in the range:

Ωm ' 0.2 ÷ 0.5 (1.7)

Again, this result is in good agreement with the other evidences coming from
smaller scales.

1this assumption is relaxed in the so called MOND scenarios in which the newtonian
gravity is modified at the galactic scale
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Figure 1.1: Rotation curve for the NGC 6503 spiral galaxy. The points
are the measured circular rotation velocities as a function of distance from
the galactic center. The dashed and dotted curves are the contribution due
to the observed disk and gas, respectively, while the dot-dash curve is the
contribution from the dark halo [6].

1.2 Theoretical motivations

From the point of view of the theory there are as many compelling reasons
as from the experimental point of view, to consider the existence of the dark
matter. Let us start by defining the theoretical framework: the cosmological
standard model. We assume that the Universe can be described in terms of
a Friedmann-Robertson-Walker (FRW) solution of the Einstein equations of
General Relativity with a perfect fluid energy-momentum tensor. The metric
of a FRW solution is a maximum spatially symmetric solution, that formally
embodies the observed isotropy and homogeneity of the Universe, whose line
element can be written as:

ds2 = −dt2 + a(t)2

[
dr2

1 − kr2
+ r2

(
dθ2 + sin2θ dφ2

)]
(1.8)
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where a(t) is the cosmological scale factor, k is the curvature constant of
the 3-dimensional subspace. The values that k can assume, choosing the
appropriate normalization, are k = −1, 0, 1, that correspond, respectively,
to an open, spatially flat and closed Universe. The coordinates r, θ and
φ constitute the so called comoving reference frame, in which a particle at
rest remains at rest, with r, θ and φ constant. The time coordinate t is the
proper time measured by an observer at rest in the comoving frame. What
is actually changing is the metric that is not time independent due to the
overall scale factor a(t). Motion with respect to this privileged reference
frame is usually addressed as peculiar motion. We can then introduce the
peculiar velocity uµ of a particle with respect to the comoving frame. The
geodesic equation is given by:

duµ

dλ
+ Γµ

νρ u
ν dx

ρ

dλ
= 0 (1.9)

where vµ = dxµ/ds and λ is an affine parameter. We can express the four-
velocity in terms of the ordinary three-velocity vi = dxi/dt using the well

known relation uµ = (u0, ui) = (γ, γvi), where γ =
(
1 − |~v|2

)−1/2
is the

usual relativistic factor. If we choose λ = s then the time component of the
geodesic equation becomes:

du0

ds
+ Γ0

νρ u
νuρ = 0 (1.10)

For the FRW metric (1.8) the only non vanishing component of Γ0
νρ is:

Γ0
ij =

(
ȧ

a

)
ηij (1.11)

where ηij is the spatial part of the flat Minkowski metric and the dot indicates
a time derivative, i.e. ȧ = da/dt. Hence, substituting (1.11) into (1.10) we
get:

du0

ds
+

(
ȧ

a

)
|~u|2 = 0 (1.12)

where |~u|2 = ηiju
iuj is the modulo of the spatial part of the four velocity.

Since u0 du0 = |~u| d |~u| the geodesic equation can be written as:

1

u0

d |~u|
ds

+
ȧ

a
|~u| = 0 (1.13)

At the end this equation can be further on reduced to the form:
∣∣∣~̇u
∣∣∣

|~u| = − ȧ
a

(1.14)
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which implies that |~u| ∝ a−1. Since pµ = muµ the magnitude of the three-
momentum of a freely moving particle scales like the inverse of the scale
factor a−1. Hence a measurement of the peculiar velocities requires a difficult
independent determination of both distance and velocity of the object, and
so can be used to probe the mass distribution in the Universe.

The equation (1.8) is a solution of the Einstein equations of General
Relativity (in unit with c = 1):

Gµν = Rµν −
1

2
Rgµν + Λgµν = −8πGN Tµν (1.15)

where Rµν is the Riemann tensor, R is the Ricci scalar and Tµν is the energy
momentum tensor. In equation (1.15) we have introduced the Λ term, that is
the (in)famous cosmological constant, whose nature is still controversial. Un-
der the previously mentioned hypothesis of isotropy and homogeneity, that
are consequences of the so called cosmological principle, the energy momen-
tum tensor assumes a particularly simple solution:

Tµν = diag (ρ, p, p, p) (1.16)

where ρ and p are respectively the density and the pressure associated to the
matter content of the Universe, that is assumed to be a perfect fluid.

The expansion rate of the Universe can thus be determined once the
Friedmann equation is written down:

H2 =
ȧ2

a2
=

8πGN

3
ρ− k

a2
+

Λ

3
(1.17)

where we have introduced the Hubble parameter, that describes the evolution
rate of the Universe:

H =
ȧ

a
(1.18)

The Friedmann equation can be solved for a(t) once ρ is assigned, so the
evolution of the Universe is completely determined by the scale factor a(t).
This can be done using a local energy conservation law, that in the standard
cosmological scenario is given by:

d

da

(
ρa3
)

= −3p
d

da
a3 (1.19)

where p = p(ρ) is the pressure. Hence we have to supply an equation of state,
too.
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In the case of a perfect fluid composed only by radiation and matter, the
equations of state are given by:

p =
1

3
ρ radiation

p = 0 matter (1.20)

Defining the critical density of the Universe ρc as:

H2 =
ȧ2

a2
=

8πGN

3
ρc (1.21)

we are able to introduce an useful dimensionless parameter, the total density
Ω:

Ω =
ρ

ρc

(1.22)

in terms of which we can rewrite the Friedmann equation (1.17) as:

(Ω − 1)H2 =
k

a2
(1.23)

where now the values of k = −1, 0, 1 correspond respectively to Ω < 1,
Ω = 1 and Ω > 1. Recalling that we have considered, in the Friedmann
equation, the presence of a cosmological constant Λ, then the total density
parameter would be the sum of two pieces Ωtot ≡ Ω = Ωm + ΩΛ. The first
contribution Ωm is due to the matter density, associated to baryonic (from
now on indicated by ΩB) and non baryonic (more or less exotic) matter, while
the second one ΩΛ = Λ/3H2 is the contribution coming from the cosmological
constant, whose presence is a long standing problem in cosmology [15].

A very interesting indication coming from the recent CMB measurements
is the determination of the total density Ωtot as well as the matter den-
sity Ωm. Current experimental CMB anisotropy measurements coming from
BOOMERanG give the following values [21]:

Ωtot = 1.03 ± 0.06

Ωmh
2 = 0.12 ± 0.05

ΩBh
2 = 0.021+0.004

−0.003 (1.24)

Analogous measurements are available from the MAXIMA and DASI experi-
ments. Their data are in substantial agreement with that of BOOMERanG [22][23].
More recently there has been an impressive improvement in the precision of
the Ω determination coming from the WMAP satellite data [24]:

Ωtot = 1.02 ± 0.02

Ωmh
2 = 0.135+0.008

−0.009

ΩBh
2 = 0.0224 ± 0.0009 (1.25)
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These data seems to give a very strong evidence in favor of a flat Universe,
and the discrepancy between the value of Ωm and ΩB suggest that a kind
of non baryonic dark matter is necessary in order to explain the observa-
tions. From the theoretical point of view, the fact the Universe is flat, i.e.

|Ωtot − 1| � 1, is naturally explained in the framework of the inflationary
theories. This assertion does not mean, as sometimes erroneously stated,
that inflation change the overall geometry of the Universe, but that locally
the Universe is flat with a great precision [25].

A simple description of the typical inflationary mechanism can be ob-
tained including an additional scalar field2 φ, the so called inflaton field, in
the standard cosmological scenario of equation (1.17), whose dynamics is
specified by a suitable scalar potential V (φ). The inflaton field couples with
gravity through a very peculiar stress-energy tensor Tµν with an “exotic”
equation of state:

p ∝ −ρ
where p and ρ are the pressure and density associated to the scalar field φ.

Assuming the so called slow roll condition, with the first derivative term
φ̇ ≡ ∂φ/∂t negligible, we obtain that the potential V must be essentially flat,
in a wide region of φ values (see [25] for details). Under these constraints
the equations (1.17) and (1.19) gives, for the cosmological scale factor, an
exponential expansion law:

a(t) ∝ eHt (1.26)

that is very different form the typical power law solution of the standard
model cosmology. The inflationary paradigm implies the existence of a period
in the very early Universe in which the dynamics was dominated by the
exponential expansion due to the presence of the scalar field. The standard
FRW expansion is recovered when the scalar field φ enters in the region
of the minimum of the potential V (φ). This phase is usually addressed as
re-heating.

The inflation mechanism is able to solve a bunch of problems, starting
from the so called flatness, or curvature problem. This problem arise be-
cause Ω = 1 in standard cosmology is an unstable point in the evolution of
the Universe, due to the fact that the curvature term k in the Friedmann
equation (1.17) tends to dominate over the ρ term. In fact, since ρ ∝ a−3 or
a−4, the ρ term in the FRW solution falls to zero much more quickly than
the k/a2 term as the Universe expands. During the inflation period, instead,
we have exactly the opposite situation and the k term is thus negligible im-
plying that the point Ω = 1 is now an attractor for the Universe evolution.

2whose origin has to be yet explained in terms of some fundamental theory.
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Moreover inflation solves the horizon problem, because, naively speaking,
our Universe is the result of the exponential expansion of a single causally
connected region. Although the original formulation of inflation [26] was not
able to make predictions about the initial spectrum of inhomogeneities, it is
possible to adjust the inflation mechanism to give the right amplitude for the
primordial fluctuations [27]. Finally it solves the magnetic monopole prob-
lem, that originate from the enormous production of this kind of particles
in the Grand Unified Theory (GUT) phase of the Universe (referring to an
underlying unifying theory at energy of about 1016 GeV).

During inflation the overall matter density, included that associated to
the monopoles that could be present at that time, is diluted by the exponen-
tial expansion to a negligible value. Thus the overall density is completely
dominated by the inflaton potential V (φ). Ordinary matter is created dur-
ing the process of re-heating. Hence we have to suppose that the re-heating
occurs not involving big enough temperatures to produce again monopoles.

We can try to summarize the scenario suggested by the CMB measure-
ments and the inflationary theoretical framework that as been described.
Firstly the prediction Ωtot = 1 is in a very good agreement with CMB
anisotropy measurements. Moreover there are strong evidences that dark
matter, at the end, must exist, since we cannot explain Ωtot = 1 only consid-
ering luminous objects. The most important indication, is that about 90%
of this dark matter must be of a non baryonic nature.

So, from the previous discussion, we could consider the total matter den-
sity as a sum of terms due to several contributions:

Ωm = ΩB + Ωχ (1.27)

where ΩB is the baryonic component and Ωχ is the component associated to
the dark matter.

1.3 Dark matter candidates

We have reviewed the present status of the dark matter problem, both from
the theoretical and experimental point of view. The conclusion that arises is
that there are strong indications of the presence of dark matter.

The first candidate to consider is something we already know to exist,
that is a kind of baryonic matter that for some reason does not emit light.
Because there is a stringent limit ΩBh

2 ∼ 0.021 (from the experimental values
in (1.24)), the baryonic matter cannot be the only dark matter component.
This limit is in very good agreement with the primordial cosmological nucle-
osynthesis constraints given in (1.6). The main candidates of the baryonic
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type are the so called massive compact halo objects, known as MACHOs. An
example of these objects are the brown dwarfs, of typical mass of 0.08M�,
that have not reached the nuclear fusion threshold. Although there are sev-
eral arguments against a unique MACHOs composition of the dark matter
(see for example [4]), big-bang nucleosynthesis constraints cannot exclude an
halo who is entirely composed by MACHOs. Measurements of the galac-
tic abundance of MACHOs, using gravitational microlensing, come from the
MACHO end EROS experiments. The more recent results [29] shows that
compact objects with a mass between 2·10−7M� and 1M� cannot account for
more than 25% of the mass of a standard spherical, isothermal and isotropic
galactic halo of 4 · 1011M�.

Another interesting possibility is that the galactic halo could be com-
posed mainly by neutral hydrogen. It is usually assumed that this hydrogen
is present in a gas form or even condensed in a kind of snow ball like state
[4]. Aside from the question of how these objects were produced, their ex-
istence requires that their dimensions has to be sufficient in order to be
gravitationally bounded. Under the simple assumption that this objects are
electrostatically bounded, the average density of the condensated hydrogen
is ρch = 0.07 g cm−3 and the binding energy per molecule is about 1 eV.
In order to survive, these kind of objects must be collisionless. This implies
that the snow ball like states must have formed when the CMB temperature
was about 9.5 K. At this temperature there is no equilibrium between the
gaseous and condensed state, and the snow ball would sublimate.

One can also consider the possibility of an halo composed of hot hydrogen
gas. It is possible to show, assuming that the gas is in thermal equilibrium,
that the temperature is:

Th ∼ 1.3 · 106 K (1.28)

The detection of hot gas is done by observing its X-ray emissions. More-
over, mapping these emissions, it is possible to obtain detailed profiles of the
temperature and density of the hot gas. It can be seen that, in this case, the
actual observations came in conflict with the theoretical expectation of an
hot gas with temperature given by (1.28). At the end, there must be some
cooling process of the gas in the halo, but this process necessarily imply star
formation, i.e. luminous objects.

Other candidates, that can be considered in the baryonic matter category,
are, for examples, black holes of mass near 100M�, white dwarfs and neutron
stars. The black holes are by far the most intriguing candidates as sources
of dark matter. One possibility is that there exist primordial black holes,
which we can assume to be formed in the early history of the Universe,
before nucleosynthesis took place. In this case they cannot be considered as
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baryonic dark matter and the crucial property in order to have a significant
portion of dark matter in the form of primordial black holes, is that the
primordial fluctuations spectrum is not a simple scale-free power law. It
can be estimated [17] the present contribution to the total density due to a
primordial black hole of mass M :

ΩPBH (M) h2 = 4.50 · 107 β (M)

(
M�

M

) 1

2

(1.29)

where the probability β (M) represents the fraction of energy density that
is going to form a primordial black hole of mass M , computed at the time
of formation of that black hole. The other possibility is that they formed
at the end of the massive star gravitational collapse, and in this case there
is no reason against a large population of massive black holes as the main
baryonic dark matter component.

The previous list exhausts the baryonic dark matter candidates. So we
are led to consider non baryonic component. At this stage there are two
different possibilities, corresponding to two different cosmological scenarios,
from the point of view of the structure formation: particles that can be
classified as hot dark matter (HDM) and particles that can be classified
as cold dark matter (CDM). The two terms, refer to the velocity of these
kind of particles at the moment of the structure formation, in particular of
the galaxy formation. Hot particles were highly relativistic, while the cold
particles were non relativistic at that moment. These two scenarios lead to
a very different primordial spectrum fluctuations [5]. The main implication
of a scenario with hot dark matter is that it cannot cluster on galaxy scales,
until it is cooled down to reach non relativistic speeds [30].

If we assume an hot dark matter scenario, we can consider essentially one
candidate, that is a light neutrino. Recent analysis [10], assuming different
theoretical framework, put a strong constraint on the lightest neutrino mass,
that has to be of the order of 10−2 eV at 99% confidence level. This, in turn,
puts an even harder constraint on the cosmological relic density of a Dirac
neutrino. In fact the relic density is approximately Ων ∼ (mν/93 eV) and
that of a Majorana neutrino is 1/2 of this quantity. Moreover, a free stream-
ing relativistic neutrino suppresses the growth of the primordial fluctuations
on scales below the horizon (Hubble scale c/H(t)), until they become non
relativistic (see [11] for a recent review).

From the point of view of the relic abundance the observational evidences
imply that the cosmological energy density of all the light weak interacting
neutrinos is constrained in the range:

5 · 10−5 ≤ Ωνh
2 ≤ 9 · 10−2 (1.30)
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All these consideration, strongly imply that a light neutrino cannot be the
dominant component of the dark matter. There is an important exception
to this scenario when one introduce the possibility, absent in the Standard
Model (unless one consider non renormalizable lepton number violating in-
teractions), to consider a right handed neutrino. In this way one is able to
generate, through the Higgs mechanism, in a way analogous to the other
leptons, a Dirac or Majorana mass term. In fact, if we add a right handed
state νR it is possible to generate a Dirac mass term for the neutrino:

mν ν̄RνL

The corresponding mass parameter is given by:

mν =
Yνv√

2
(1.31)

where Yν is the neutrino Yukawa coupling and v is the vacuum expectation
value of the Higgs field. It is also possible to consider a Majorana mass term
given by:

MνRνR

In the case M � mν, the seesaw mechanism [18] produces two mass eigen-
states given by:

mν1
' m2

ν

M
mν2

'M (1.32)

where mν1
is a very light mass while mν2

is heavy. The neutrino state ν1 could
constitute an excellent dark matter candidate, but the viable mass range in
order to obtain a consistent structure formation scenario, is quite restricted
(see [19]).

Now we turn to the more interesting scenario of the cold dark matter.
In this scenario we have to consider more or less exotic particles that have
not yet been discovered. The main candidates could be divided into two
categories: the axions and the weak interacting massive particles (WIMP).
The axion boson (technically a pseudo Nambu-Goldstone boson [13]), let us
indicate3 as a, arise as consequence of the Peccei-Quinn (PQ) solution of
the strong CP problem in QCD (see [12] and references therein). Recent
experimental constraints put for the axion mass the following limit:

ma < 1 KeV

and this imply that the early PQ proposal is not at all correct. Astrophysical
limits are more stringent and rule out, for the axion mass, the interval:

0.4 eV < ma < 200 KeV

3not to be confused with the scale factor a(t)
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while an axion with mass ma > 200 KeV is too heavy to be produced. If
this type of particles have been produced in the QCD phase transition in
the early Universe, then they could have the right cosmological density (of
order of Ωa ∼ 1). The experimental techniques that could probe a large
portion of the axion parameter space rely on the interaction between axions
and photons. The possible form of the interaction lagrangian is:

Laγγ = −gaγγ
~E · ~B a (1.33)

where gaγγ is the interaction coupling constant, that, in general, is weakly

model dependent, ~E and ~B are the electric and magnetic fields, while a is the
previously mentioned axion field. The coupling constant, in the interesting
mass range, is very small, and so the expected lifetime is greater of the age
of the Universe. The axions could be detected via resonant conversion of
photons in a strong magnetic field [14].

We exhaust the list of cold dark matter candidates with the, by far, largest
class of particles, the WIMP class. These are stable particles that usually
appear in some extension of the Standard Model and that interact with or-
dinary matter mainly through weak interactions. One can consider different
types of these candidates, like an heavy fourth generation Dirac or Majorana
neutrinos or the neutralino and sneutrino in supersymmetric models. The
most promising candidate is the neutralino, that will be described extensively
in chapter 4. However it is possible to study some general properties of a
WIMP without actually specifying its exact nature.

1.4 WIMP Relic Density

We now focus only on WIMP candidates and the first task to perform is to get
an estimate of the relic cosmological abundance of these particles. It has been
shown ([31] and reference therein) that if a stable particle χ exists, it could
have the right cosmological abundance to be a good dark matter candidate.
Here, we do not need to specify in details the nature of this particle. Such
a particle exists in thermal equilibrium and in a great quantity in the early
phase of the Universe expansion, when the temperature is:

T � mχ

where T = T (t) is the temperature of the Universe at a given time t and mχ

is the WIMP mass. The equilibrium abundance is maintained through the
annihilation of the particle with its own antiparticle χ̄ into a lighter couple
of particle-antiparticle ll̄.
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The direct and indirect processes are:

χχ̄ → ll̄

ll̄ → χχ̄

In many case of interest χ is a Majorana particle, so it coincide with its own
antiparticle χ = χ̄. As the Universe cools down to a temperature:

T � mχ

the equilibrium abundance drops exponentially until the rate of the direct
annihilation reaction, that is χχ̄ → ll̄, falls below the expansion rate of
the Universe H. At that point the interactions which maintains thermal
equilibrium are not able to work anymore and so the relic abundance remains
constant (this process is usually called freeze-in). It is rather clear that the
result of the cosmological abundance calculation for a thermal relic is crucial
to the arguments for WIMP dark matter.

Let us analyze a simple case where in addition to the known particles of
the Standard Model there exists a new, yet undiscovered, stable WIMP of
mass χ. In thermal equilibrium the number density of the χ particle is given
by:

neq
χ =

g

(2π)3

∫
f(p)d3p (1.34)

where g is the number of degrees of freedom of the particle and f(p) is the
Fermi-Dirac or Einstein-Bose distribution function. There are two limiting
cases corresponding to the two regimes of high and low temperatures we have
seen before:

neq
χ ∝ T 3 for T � mχ

neq
χ ∼ g

(
mχT

2π

)3/2

exp

(−mχ

T

)
for T � mχ (1.35)

where in the last case we can see the their density is Boltzmann suppressed.
If the expansion of the Universe were so slow to maintain thermal equilibrium,
the number of WIMPs today would be exponentially suppressed. In this case
we would not have WIMPs at all. However we remind that the Universe is not
static (recall the FRW solution (1.8)) and so the thermodynamic equilibrium
cannot be ensured during the whole evolution. In fact, at high temperatures,
i.e. T � mχ, the χ particles are present with a great abundance and the
annihilation process into lighter particles, as well the inverse process, goes
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on quickly. But when T < mχ the number density neq
χ drops exponentially.

The annihilation rate of the χ particles, is given by:

Γ = nχ 〈σann v〉 (1.36)

where 〈σann v〉 is the thermally averaged total annihilation cross section of
χχ̄ into lighter particles times the relative velocity v. When Γ drops below
the expansion rate:

Γ . H

there is a freeze-out condition for the WIMPs. In fact, the annihilation time
scale given by Γ is less than the Hubble constant H, i.e. the time scale for
the Universe expansion.

The simple scenario we have presented, can be quantitatively encoded into
the Boltzmann equation, which describes the time evolution of the number
density nχ(t) of a generic WIMP:

dnχ

dt
+ 3Hnχ = −〈σann v〉

[
(nχ)2 −

(
neq

χ

)2]
(1.37)

where H and a = a(t) are, respectively, the Hubble constant and the scale
factor defined in section 1.2. The second term on the left-hand side (LHS) of
this equation accounts for the expansion of the Universe, being proportional
to H. If there are no interactions that change the WIMP number, the right-
hand side (RHS) is zero, and we recover the previous result where nχ ∝ a−3

(in this regime there are roughly as many χ particles as photons and a ∝ T−1

in the radiation dominated era). The two terms in brackets on the RHS
of equation account for annihilation and creation of WIMPs in the direct
and indirect channel. At the equilibrium we clearly have that this term is
zero. The equation (1.37) describes both Dirac particles as well as Majorana
particles which are self annihilating, because, in this case, χ = χ̄. However
the two cases are distinct, because for Majorana particles, the annihilation
rate is:

n2
χ

2
〈σann v〉

In each annihilation two particles are involved, and so this cancels the fac-
tor 2 in the annihilation rate. For Dirac particles which have no particle-
antiparticle asymmetry, nχ = nχ̄, the Boltzmann equation (1.37) still holds.
In this case the total number of particles plus antiparticle is now 2nχ. In
the case of particle-antiparticle asymmetry, the relic abundance is generally
given by this asymmetry [28]. A typical example is given by the relic proton
density that is essentially fixed by the proton-antiproton asymmetry, i.e. the
baryon number of the Universe.
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Figure 1.2: Comoving number density of a WIMP as a function of x =
mχ/T . The dashed curve are the actual abundances for different thermal
averaged annihilation cross sections while the solid curve is the equilibrium
abundance [30].

There is no known closed form solution for the Boltzmann equation, but
it is possible to write down an approximate solution for the case in which
〈σann v〉 is weakly energy dependent. In this case the WIMP relic abundance
is given by [31]:

Ωχh
2 =

mχnχ

ρc
∼
(

3 · 10−27 cm3 s−1

〈σann v〉

)
(1.38)

There is no dependence from the WIMP mass, modulo logarithmic correc-
tions, and it is inversely proportional to the annihilation cross section.

We can show some examples of numerical solution of the Boltzmann equa-
tion in figure 1.2. The number density functions per comoving volume are
denoted with dashed lines. They are functions of x ≡ mχ/T , that increase
with cosmic time. For comparison there is also the equilibrium solution,
denoted with a solid line. The relation (1.38) shows that, if a stable new
particle exist with a weak scale interaction, i.e. with an annihilation cross
section of the order of:

〈σann v〉 ∼ 10−25 cm3 s−1 (1.39)
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then it will account for the right order of magnitude for the relic abundance.
This is a quite interesting result because there is no a priori reason for a weak
scale interaction to have something in common with the relic abundance, that
is a cosmological parameter. Hence the most motivated candidate for the
dark matter is a stable particle associated with new physics at the electroweak
scale.
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Chapter 2

Supersymmetric theories

2.1 Introduction

We have seen in the previous chapter that the most motivated candidate for
the cold dark matter, that seems to be the only scenario compatible with our
current understanding of the structure formation, is a kind of WIMP parti-
cle. This candidate has to be found in some new theoretical extension of the
Standard Model (SM) of the fundamental interactions based on the gauge
group SU(3)⊗ SU(2)⊗U(1). The SM describes in an accurately way, up to
the energy currently reached in the experiments E ∼ 1 TeV, the electroweak
interactions of the Glashow-Weinberg-Salam model and even the QCD sec-
tion of the strong hadron interactions. However the SM has some undesirable
features, at least from an “aesthetic” point of view. In fact, it is quite dis-
appointing that the SM depends on a great number of free parameters, like
the three coupling constants, the two Higgs potential parameters, the fermion
masses, the angles and phases associated to the Cabibbo-Kobayashi-Maskawa
(CKW) matrix. Moreover, the SM does not include the gravitational interac-
tions and does not lead to the coupling unification at high energies. Moreover
it is overly sensitive to radiative corrections. This problem is common to all
gauge theories with a spontaneous broken symmetry. In fact the radiative
corrections to the mass of the scalar particle, like the Higgs one, quadratically
diverge due to fermion loops. The classical Higgs scalar potential is:

V = m2
H |H|2 + λ |H|4 (2.1)

where m2
H is the Higgs boson mass squared parameter and α is the coupling

constant. The SM requires a non-vanishing vacuum expectation value (VEV)
for H at the minimum of the potential. This can be achieved if m2

H < 0,
resulting in < H >=

√
−m2

H/2λ. Since we know experimentally that <

H >= 174GeV , it follows that m2
H ∼ − (100GeV )2.
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Figure 2.1: Quantum corrections to the Higgs mass due to: (a) fermion loop,
(b) scalar loop

The Higgs boson mass squared receive quantum corrections and so can
be written as:

m2
H = m2

bare + δm2 (2.2)

where the correction δm, coming from the loop (a) in figure 2.1 is:

δm2 ∼ α2

∫ Λ

0

d4k

(6k −mf) (6k+ 6p−mf )
∼ O

(
α2
)
Λ2 (2.3)

where α is the coupling constant, mf is the fermion mass, p is the scalar par-
ticle momentum and Λ is the cutoff energy scale of our theory, beyond which
the theory is not valid anymore. For the SM, Λ = MGUT , i.e. the unification
scale. From equation (2.3) we can see that the scalar particle masses are of
the order αΛ, so it is necessary that mbare in the relation (2.2) be of the same
order of αΛ. This requires an extremely precise fine tuning, that seems very
unnatural. In fact this kind of problem is known as the naturalness problem.
At the same time the SM does not explain why mH � αΛ, and this is known
as the hierarchy problem. All these facts seems to indicate that the SM is a
low energy theory approximation of a more fundamental theory.

Supersymmetry seems to be able to solve in a simple and natural way
(from a theoretical point of view) both problems. This enhanced symme-
try establishes a perfect balance between bosonic and fermionic degrees of
freedom. So supersymmetric partners of the ordinary SM particle possess
the same quantum numbers and the same mass, but have different spins.
In this way the naturalness problem is immediately solved, because to ev-
ery fermionic loop is associated a bosonic loop, in which the particle that
flows in the loop has the same mass and couplings of the fermionic one. Due
to the different statistic of fermions and bosons, the two contributions have
opposite signs and so the quadratic divergences is cancelled:

δm2
H = δm2

b − δm2
f = 0 (2.4)
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A supersymmetric theory has the very important property of being free
from quadratic divergences. But, supersymmetry can only be an approximate
symmetry of the underlying theory of fundamental interactions since it must
be broken at the energy scales that are currently probed by our experiments.
In fact, to agree with experiments, the superparticles belonging to the same
supersymmetry multiplet must have higher mass. In this case (2.4) is not
exact and the Higgs boson receives a radiative contribution of the order of
the supersymmetric mass scale ΛSUSY :

δm2
H ∼ Λ2

SUSY (2.5)

In order to solve the hierarchy problem δmH must be of the same order
of the mass mH and this, in turn, implies that the supersymmetry scale is of
the order:

ΛSUSY ∼ O(1 TeV) (2.6)

To summarize, we can say that supersymmetry is able to solve, at the
same time, the naturalness and the hierarchy problem, and that this solution
essentially sets the scale to which supersymmetry appear. Moreover it is
possible to find inside the supersymmetric theories massive stable particle
that are the natural candidates as WIMP constituents of the dark matter.

In the following sections we will introduce supersymmetry and his impor-
tant properties. We will introduce the necessary mathematical ingredients,
and define the minimal supersymmetric extension of the SM, indicated as
MSSM, that constitutes our theoretical framework in which to describe the
neutralino as a natural supersymmetric candidate for the dark matter.

2.2 Supersymmetry

In this section we define formally the concept of supersymmetry, a trans-
formation that turns a bosonic state into a fermionic state. Let us recall
that, in ordinary gauge theories, like the SM, fermions and bosons belong
to different representations of the gauge group, and only the gauge vector
boson interactions are completely determined by the local gauge invariance
of the theory. So we could introduce a symmetry that links in some way the
different representations of the gauge group. Formally [33] we can define the
action of an operator Q as the generator of this symmetry:

Q |Boson〉 = |Fermion〉 Q |Fermion〉 = |Boson〉 (2.7)

and this operator must be an anticommuting spinor, due to the different
statistic. Let us sketch a simple argument that demonstrate this statement.
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Because fermions and bosons behave differently under rotations, the operator
Q cannot be invariant under such rotations. We can, for example, apply the
unitary operator U which, in the Hilbert space, represents a rotation in the
configuration space of 2π around some axis. Then from the formal definition
of equation (2.7) we get that:

UQ |Boson〉 = UQU−1U |Boson〉 = U |Fermion〉
UQ |Fermion〉 = UQU−1U |Fermion〉 = U |Boson〉 (2.8)

since the fermionic states pick up a minus sign when rotated through 2π,
while the bosonic state do not, we have:

U |Fermion〉 = − |Fermion〉 U |Boson〉 = |Boson〉 (2.9)

Now, since fermionic and bosonic states form a basis in the Hilbert space,
we get:

UQU−1 = −Q (2.10)

which implies that the rotated supersymmetry generator picks up a minus
sign, just as a fermionic state does. Extending this analysis to an arbitrary
Lorentz transformation shows precisely that Q is a spinor (anticommuting)
operator. The result of a Lorentz transformation followed by a supersym-
metry transformation is different from that when the order of the transfor-
mations is reversed. Let us see how to derive the algebra of these symmetry
transformation. Firstly we require the theory1 to be invariant with respect
to Poincare transformations, whose generators are the translation generator,
the momentum Pµ, and the Lorentz generators Mµν . Moreover the theory
can possess a group of internal symmetry G, whose generators can be indi-
cated with ti. The Poincare group and internal group generators satisfy the
following algebra:

[Pµ, Pν] = 0

[Pµ,Mρσ] = i (gµρPσ − gµσPρ)

[Mµν ,Mρσ] = i (gµσMνρ + gνρMµσ − gµρMνσ − gνρMµσ)

[ti, tj] = ifij
ktk (2.11)

Coleman and Mandula [32] have shown, that under some general assumption,
like the existence of an non trivial S-matrix and the existence of a unique
vacuum state with a finite energy gap between it and the lowest particle state,
any group of bosonic symmetries of the S-matrix in a relativistic field theory

1we consider only theories in D = 4 space-time dimensions
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is the direct product of the Poincare group with an internal symmetry group.
This symmetry group, moreover, must be the direct product of a compact
semi-simple group with U(1) factors.

This important result imply that the Poincare group and internal sym-
metry group operators must commute with each other:

[Pµ, ti] = 0

[Mµν , ti] = 0 (2.12)

and as a consequence we have the two following relations:

[
W 2, ti

]
= 0 (2.13)[

P 2, ti
]

= 0 (2.14)

where P 2 = PµP
µ is the mass square operator and W 2 = WµW

µ is the
generalized spin operator, with W µ the Pauli-Lubanski vector, defined as:

W µ = −1

2
εµνρσPνMρσ

Equation (2.17) implies that every particle belonging to an irreducible
representation of the internal gauge symmetry group must have the same
spin, while equation (2.18) implies that they must have the same mass. This
is what usually happens in gauge theories, where the fact that particles in
the same multiplet have different masses is due to a symmetry breaking
mechanism. The Coleman and Mandula theorem prohibits the existence, in
an invariant Poincare theory, of bosonic operators that transforms fields of
different statistic into each other. As we have previously seen, this is possible
if we introduce fermionic operators. In this case the concept of Lie group
must be enlarged in order to taking into account fermionic generators[34].
The results is the so called superalgebras or graded Lie Algebras. If next to
the bosonic operators, let us indicate by Bi, we introduce fermionic operators
Fα (with the right spinor index α), we can write the commutation relations
for a superalgebra, that involves both commutators and anticommutators:

{Fα, Fβ} = rαβ
iBi

[Bi, Bj] = icij
kBk

[Fα, Bi] = sαi
βFβ (2.15)

where rαβ
i, cij

k and sαi
β are the structure constants of the algebra. The

simplest realization of this algebra is N = 1 supersymmetry, obtained im-
plementing the Poincare invariance and transformations generated by two
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spinorial operators Qα and Q̄β̇ (see the appendix A for the two component
Van Der Warden notation). The index N counts the number of fermionic
charges. The commutation relations are given by the equations (2.11) and
by the following relations:

{Qα, Qβ} =
{
Q̄α̇, Q̄β̇

}
= 0

{
Qα, Q̄β̇

}
= 2σµ

αβ̇
Pµ

[Qα, Pµ] =
[
Q̄α̇, Pµ

]
= 0

[Qα,Mµν] =
1

2
(σµν)

β
α Qβ

[
Q̄α̇,Mµν

]
= −1

2
Q̄β̇ (σ̄µν)

β̇
α̇ (2.16)

where the spinorial operators Qα and Q̄β̇ belong, respectively, to the rep-
resentations (1/2, 0) and (0, 1/2) of the Lorentz group. They transform as
left-handed spinor for Qα, and a right-handed spinor for Q̄β̇. When they are
applied onto a field of spin j, they transform it in a field of spin j ± 1/2.

Two important consequences of the supersymmetry algebra (2.16) are
the following relations that substitute the previously derived relations (2.17)
and (2.18):

[
W 2, Qα

]
6= 0 (2.17)[

P 2, Qα

]
= 0 (2.18)

that shows that the elements of the same multiplet have different spins.
They belong to what is called supermultiplet. However particles in the same
supermultiplet must have the same mass. Because there are no experimental
evidences of this kind of supermultiplets, supersymmetry must be broken at
some energy scale.

It is possible to construct supersymmetric theories with a higher number
of generators N . Consistent renormalizable extended supersymmetric theo-
ries can be built for N ≤ 4 [36]. If we consider also supergravity, consistent
theories can be built for N ≤ 8 [57]. In the following discussion we will
concentrate on N = 1 theories.

2.3 Superfield formalism

We have defined an N = 1 supersymmetric theory as the theory that is
invariant under the transformations (2.16). In order to describe in a simple
way this invariance, it is useful to introduce a mathematical tool that enlarges
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the usual D = 4 space-time introducing fermionic coordinates: this is called
the superspace [35]. In the N = 1 case, superspace is built by introducing two
anticommuting coordinates, let us call θα and θ̄α̇, that satisfy the following
relations: {

θα, θβ
}

=
{
θ̄α̇, Qβ

}
= [Pµ, θ

α] = 0 (2.19)

These coordinates commute with ordinary space-time translations. The two
coordinates θα and θ̄α̇ are Weyl spinor that corresponds to two inequivalent
representations of the group SL (2,C). Superspace is defined by the following
set of coordinates: (

xµ, θα, θ̄α̇
)

where the xµ’s are the ordinary space-time, bosonic, coordinates. More tech-
nically, ordinary space-time can be defined as the coset space of the Poincare
group (whose transformations has been defined in the equation (2.11)) over
the Lorentz group, and so in similar way we can define global flat superspace
as the coset space of the super-Poincare group (defined in the equation (2.16)
plus the ordinary Poincare transformations (2.11)) over the Lorentz group.

A generic supersymmetry transformation is defined in superspace as fol-
lows:

h
(
xµ, θα, θ̄α̇

)
= ei(−xµPµ+θαQα+θ̄α̇Q̄α̇) (2.20)

that is a convenient parameterization of the coset space, relative to some ori-
gin [35]. The application of two successive transformations h

(
x, θ, θ̄

)
h
(
y, ζ, ζ̄

)

on superspace has the net effect of a translation:
(
xµ, θ, θ̄

)
→
(
xµ + yµ + iθσµζ̄ − iζσµθ̄ , θ + ζ , θ̄ + ζ̄

)
(2.21)

where we have not written the spinorial indices. From this finite transfor-
mation it is possible to obtain the differential form of the generators Qα and
Q̄α̇:

Qα =
∂

∂θα
− iσµ

αβ̇
θ̄α̇∂µ

Q̄α̇ = − ∂

∂θ̄α̇
+ iθβσµ

βα̇∂µ (2.22)

recalling that Pµ = −i∂µ. It is possible to shown that the differential opera-
tors (2.22) are associated to the left multiplications acting on the superspace
coordinates. We could consider, as well, the differential operators acting from
the right:

Dα =
∂

∂θα
+ iσµ

αβ̇
θ̄α̇∂µ

D̄α̇ = − ∂

∂θ̄α̇
− iθβσµ

βα̇∂µ (2.23)
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that satisfies the following anticommutation relations:
{
Dα, D̄α̇

}
= −2iσµ

αα̇∂µ

{Dα, Dβ} =
{
D̄α̇, D̄β̇

}
= 0 (2.24)

while Dα and Qα anticommute.
At this stage we are able to introduce the superfield concept, that is a

function of the superspace coordinates
(
x, θ, θ̄

)
that realizes a representation

of the supersymmetry algebra. The superfield components can be retrieved
as a power series in θ and θ̄. This series has a finite number of terms,
because all the powers higher than θ2 and θ̄2 are identically zero, due to the
anticommutation relations. The more general form in which a superfield can
be written is:

F
(
x, θ, θ̄

)
= f(x) + θφ(x) + θ̄χ̄(x) +

+θθm(x) + θ̄θ̄n(x) + θσµθ̄vµ(x) +

+θθθ̄λ̄(x) + θ̄θ̄θψ(x) + θθθ̄θ̄d(x) (2.25)

From the algebra (2.16) it is possible to derive the mass dimensions of
the operator Q, that is [Q] = 1/2, and so [θ] = −1/2. The field components
of the superfield have then increasing dimension from [f ] to [d] − 2, while
the mass dimension of the superfield coincides with the dimension of lowest
component f . The fields φ, χ, λ and ψ have a spinorial index and so they
are fermionic fields, while the remaining fields f, m, n, vµ and d are bosonic
fields. We know that the physical fields have dimensions 1 if they are bosonic
and 3/2 if they are fermionic. So it is possible to build two different kinds
of supermultiplets: the chiral and the vector supermultiplets. In the former
the fermionic component has the right mass dimension while in the latter the
vector component vµ has the right bosonic mass dimension. All the other
fields in the supermultiplet are auxiliary fields that can be eliminated using
the equations of motion.

The superfield representation given by (2.25) is the more general possible
and it is reducible. So in order to reduce the representation we can impose
some constraints on the superfield. From these constraints we will be able to
build the chiral and the vector superfields.

2.4 Chiral superfields

The constraint that has to be imposed in order to define a chiral superfield
is:

D̄α̇Φ = 0 (2.26)
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To deduce the form of the chiral superfield Φ it is convenient to introduce
a new variable:

yµ = xµ + iθσµθ̄ (2.27)

and it is quite straightforward to show that the variable y satisfies:

D̄α̇ (yµ) = D̄α̇

(
xµ + iθσµθ̄

)
= 0 (2.28)

Every functions of the variable y and θ satisfies (2.26), too. The most general
solution of this type can be written as:

Φ = A(y) +
√

2θψ(y) + θθF (y) (2.29)

where the lowest component A(y) is a bosonic scalar field, ψ(y) is a fermionic
field and F (y) is the auxiliary field component. The superfield Φ is called
left-handed chiral superfield, because in model building it is used to contain
fermions of left-handed chirality. It is obviously possible to consider right-
handed chiral superfields, defined by the equation:

DαΦ† = 0 (2.30)

where Φ† can be naturally expressed as a function of (y+)
µ

= xµ − iθσµθ̄ and
θ̄. The expansion series in θ̄ power is, in this case, given by:

Φ† = A∗
(
y+
)

+
√

2θ̄ψ̄
(
y+
)

+ θ̄θ̄F ∗
(
y+
)

(2.31)

2.5 Vector superfields

In order to define the vector superfield we must recall that, in every gauge
theory, the vector boson fields are real fields. To define a vector superfield V
we then impose the reality condition:

V † = V (2.32)

and this condition reduces the number of components to seven, five bosonic
and 2 fermionic [35]. To further reduce the number of components in the
vector field, we can use the so called Wess-Zumino (WZ) gauge. A vector
superfield in this gauge is given by:

V = −θσµθ̄vµ(x) + iθθθ̄λ̄(x) − iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x) (2.33)

and it describes a bosonic vector field vµ and a fermionic spinorial field λα.
There are two interesting relations satisfied by a vector superfield:

V 2 = −1

2
θθθ̄θ̄vµv

µ

V 3 = 0 (2.34)

due to the anticommutativity properties of θ and θ̄.
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2.6 Supersymmetric lagrangians

A convenient way to obtain an invariant supersymmetric action is based on
the property that the highest component of a supermultiplet transforms as a
total space-time derivative [35][36][37]. The integral over the whole volume
vanishes identically, if we impose that the fields are zero along the boundary
of the integration region. The common way to build an invariant action is
thus to consider only the highest components of superfields and product of
superfields. For chiral superfields the highest components is that proportional
to θθ, called F-term, while for the vector superfields the highest components
is that proportional to θθθ̄θ̄, called D-term. Now we have to introduce the
Berezin integration [35] for anticommuting variables as:

∫
dθ = 0,

∫
θdθ = 1 (2.35)

and all the properties of this peculiar type of integration can be summarized
saying that the Berezin integration is equivalent to the differentiation:

∫
dθαf (θ) =

∂

∂θα
f (θ) (2.36)

and so: ∫
dθα =

∂

∂θα
(2.37)

The invariant action can be explicitly written as:

S =

∫
d4x

(∫
d2θLF +

∫
d2θd2θ̄LD

)

=

∫
d4x (LF |θθ + LD|θθθ̄θ̄) (2.38)

where we have introduced the symbol |... to denote the projection over the
corresponding θ and θ̄ terms, and where LF and LD are respectively the
lagrangian density associated to chiral superfields and to vector superfields.
The chiral superfield lagrangian density is made out of chiral superfields.
The product of chiral superfields is again a superfield, while the product of
a right-handed chiral superfield Φ† with a left-handed superfield Φ, behaves
like a vector superfield. If we want to obtain a renormalizable theory we
have to use in the lagrangian operators with mass dimension d ≤ 4 [61]. This
implies to have products of no more three chiral superfields, because the mass
dimension of a chiral superfield is equal to that of his lowest component, i.e.

d = 1.
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The most general renormalizable lagrangian that contains only chiral su-
perfields Φi, with the index i = 1, . . . , N running on the number of super-
fields, is thus [35]:

LΦ = Φ†
iΦi

∣∣∣
θθθ̄θ̄

+

[(
λiΦi +

1

2
mijΦiΦj +

1

3
gijkΦiΦjΦk

)∣∣∣∣
θθ

+ h.c.

]
(2.39)

where mij and gijk are the coupling constants, totally symmetric under the

exchange of their indices. The term Φ†
iΦi

∣∣∣
θθθ̄θ̄

is the kinetic term, while

the remaining terms describe the couplings and the interactions between the
fields. This can be observed more clearly if we write the lagrangian in terms
of component fields [38]:

LΦ = i∂µψ̄iσ
µψi + A∗

i �Ai + F ∗
i Fi + (2.40)

+

[
mij

(
AiFj −

1

2
ψiψj

)
+ gijk (AiAjFk − ψiψjAk) + λiFi + h.c.

]

From (2.41) we see that the auxiliary fields Fi do not have a kinetic term.
Their equations of motion are purely algebraic and so can be used to elimi-
nate the fields Fi from the lagrangian. This generates the cubic and quartic
interaction terms for the scalar fields Ai:

LΦ = i∂µψ̄iσ
µψi + A∗

i �Ai −
1

2
mijψiψj (2.41)

−1

2
m∗

ijψ̄iψ̄j − gijkψiψjAk − g∗ijkψ̄iψ̄jA
∗
k − V

(
Ai, A

∗
j

)

where we have introduced the scalar potential V
(
Ai, A

∗
j

)
that is equal to:

V
(
Ai, A

∗
j

)
= F ∗

i Fi = |λk +mikAi + gijkAiAj|2 (2.42)

where F ∗
i and Fi are given in terms of the solutions of their equations of

motion:

Fk = −λ∗k −m∗
ikA

∗
i − g∗ijkA

∗
iA

∗
j

F ∗
k = −λk −mikAi − gijkAiAj (2.43)

The scalar potential V is automatically bounded from below as a con-
sequence of the supersymmetry. The points for which Fi = 0 are absolute
minima of the potentials.

Once we have written the lagrangian for the chiral superfields we can build
the lagrangian part involving vector superfields. The most straightforward
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method is to write down the right kinetic terms for a vector field vµ starting
from a superfield V , defining a superfield that contains, as a component, a
field strength for the vector field fµν = ∂µvν − ∂νvµ. This can be achieved
introducing two spinorial quantities:

Wα = −1

4
D̄D̄DαV

W̄α̇ = −1

4
DDD̄α̇V (2.44)

where the superfield V can be thought as the supersymmetric generalization
of the Yang-Mills potential. The superfields Wα and W̄α̇ are, respective, left-
handed and right-handed chiral superfields. Chirality follows immediately:

D̄β̇Wα = 0

DβW̄α̇ = 0 (2.45)

The lagrangian that describes the kinetic term for a vector superfield is
given by:

LV =
1

4
W αWα|θθ + W̄α̇W̄

α̇
∣∣
θ̄θ̄

(2.46)

that, using the Wess-Zumino gauge can be written, in terms of field compo-
nents, as:

LV = −1

4
vµνvµν − iλσµ∂µλ̄+

1

2
D2 (2.47)

where we can recognize the two kinetic terms for the vector field vµ (involving
the field-strength vµν) and for the fermionic field λ. Again the auxiliary field
D has no dynamics and so it is possible to eliminate it through the equations
of motion. In the case of the free theory, we simply have D = 0. In the
next section we will see how, in the more general case of an interacting gauge
theory, one is able to generate the quartic interaction terms for the scalar
fields.

2.7 Gauge invariance and supersymmetry

We have seen in the previous section how to build a theory, involving scalar,
fermionic and vector fields, invariant under supersymmetry transformations.
We have also seen that the superfield formalism allows us to write the theory
in a compact and very elegant way. The next step consists in requiring also
gauge invariance. In order to perform this task, it is necessary to extend the
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notion of gauge transformations to superfields. This can be realized as in
the analogous non supersymmetric case: once the gauge transformations for
the scalar and fermionic fields are defined, we introduce a vector field, that
belongs to a vector supermultiplet, which has the right transformation prop-
erties under gauge transformations and the right couplings with matter fields
in order to guarantee the invariance of the total lagrangian [39][40][41][42].

To see how the gauge invariance works let us start with a simple abelian
case in which the gauge group is U(1). The transformation changes a chiral
superfield by a phase:

Φ → Φ′ = e−igΛΦ

Φ† → Φ†′ = eigΛ†

Φ† (2.48)

where g is the U(1) charge associated to the superfield Φ and Λ is the
transformation parameter. Requiring Φ′ to be still a chiral superfield, it is
easy to see [35] that Λ must be a left-handed chiral superfield (so D̄α̇Λ = 0).
In the case of global invariance under U(1) transformations the superfield
Λ does not depend on space-time coordinates and so the chiral part of the
lagrangian (2.39) contains only a term that is not invariant under global U(1)
transformations:

λiΦi

We will not consider this term anymore. When we employ a local version of
the transformations (2.48) with Λ = Λ(x), we can see that even the kinetic

term Φ†
iΦi

∣∣∣
θθθ̄θ̄

is not invariant. The way to restore gauge invariance is by

introducing a vector superfield V that transforms as follows:

V → V ′ = V + i
(
Λ − Λ†

)
(2.49)

and to redefine the kinetic term of the chiral superfields, with a minimal
coupling prescription, as:

Φ†
iΦi → Φ†

ie
gV Φi (2.50)

Analyzing the vector superfield transformations (2.49) in terms of com-
ponent fields, we see that they encode the correct gauge transformation for
the vector field vµ:

vµ → v′µ = vµ − i∂µ (a− a∗)

λ → λ′ = λ

D → D′ = D (2.51)

where a is the scalar component of the gauge supermultiplet Λ. The fields
λ and D are gauge invariant.
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The new transformation (2.50) is able to generate the usual minimal
coupling between matter and gauge fields. The lagrangian invariant under
both supersymmetry and gauge transformations can thus be written as:

L =
1

4
W αWα|θθ + W̄α̇W̄

α̇
∣∣
θ̄θ̄

+ Φ†
ie

gV Φi

∣∣∣
θθθ̄θ̄

+ LSP

LSP =

(
1

2
mijΦiΦj +

1

3
gijkΦiΦjΦk

)∣∣∣∣
θθ

+ h.c. (2.52)

where the term LSP is the so called superpotential term and must contain
only gauge invariant combinations of chiral superfields. At first sight the
lagrangian (2.52) looks badly non renormalizable, due to the presence of the
kinetic term for the chiral superfields. But we have the gauge freedom to
evaluate it in the WZ gauge, where V 3 = 0. Thus, the kinetic term for the
chiral superfields, written in terms of field components, assume the form:

Φ†egV Φ
∣∣
θθθ̄θ̄

= FF ∗ + A�A∗ + i∂µψ̄σ̄
µψ + (2.53)

+gvµ

(
1

2
ψ̄σ̄µψ +

i

2
A∗∂µA− i

2
∂µA

∗A

)
+

− i√
2
g
(
Aλ̄ψ̄ − A∗λψ

)
+

1

2

(
gD − 1

2
g2vµv

µ

)
A∗A

where we have neglected the flavor indices. We see that in the WZ gauge
the lagrangian contains no terms with mass dimension higher than four.

The generalization to non abelian compact groups is only a little more
complex, but we can use the same formalism that we have developed before.
We define the same transformation rule for the chiral superfield as in the
equation (2.50), but now the parameter Λ is a matrix:

Λij = T a
ijΛa (2.54)

where the matrices T a are the hermitian generators of the gauge group in
the representation defined by the chiral superfield Φ. In the adjoint repre-
sentation of the gauge group the matrices T a satisfy the usual commutation
relation: [

T a, T b
]

= itabcT b (2.55)

where tabc are the completely antisymmetric structure constants and we have
chosen an appropriate normalization for our hermitian generators. We must
introduce as many vector superfields Va as generators in the gauge group.
The generalization of equation (2.49) to the non abelian case leads to:

egV → egV ′

= e−igΛ†

egV eigΛ (2.56)
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with Λ and V given by:

Λij = T a
ijΛa

Vij = T a
ijVa (2.57)

and where the minimal coupling is always defined as in (2.50). The super-
symmetric field-strength W α may be readily generalized to the non abelian
case:

Wα = −1

4
D̄D̄e−gVDαe

gV (2.58)

where the vector superfields are matrices as in (2.57), but with the generators
in the adjoint representation of the gauge group. It is quite easy to verify
that:

Wα → W ′
α = e−iΛWαe

iΛ (2.59)

under non abelian gauge transformations. The most general renormalizable
lagrangian invariant under both supersymmetry and gauge transformations
is still given by equation (2.52).

It is important to observe that every chiral superfield Φ that appears in
the lagrangian (2.52) and that contains the matter fields of the theory, besides
belonging to a chiral representation of the supersymmetry transformations,
belongs to a representation of the gauge group. Usually this representation
is the fundamental one. In the same way, the vector superfield belongs to a
real representation of the supersymmetry transformations and to the adjoint
representation of the gauge group.

The superpotential defined in the equation (2.52) can contain, in general,
an arbitrary gauge invariant product of two or three chiral superfields. In
such a way it is possible to introduce, in the superpotential, terms that vi-
olate the conservation of some global quantum number, as the baryonic or
leptonic number. To avoid the appearance of such terms, we can constraint
the form of the superpotential introducing some new global symmetries in the
lagrangian. The supersymmetry transformations, in particular, allow to in-
troduce a general class of global continuous symmetries, called R-symmetries
[43][44].

The most simple situation is when we consider a discrete subgroup of these
symmetries, the so called R-parity transformations [45]. This transformation
introduce a new quantum number defined as follows:

R = +1 for ordinary particles
R = −1 for supersymmetric particles

(2.60)

Sometimes it can be useful to recast R-parity in terms of the baryonic
number B and the leptonic number L:

R = (−1)3(B−L)+2S (2.61)
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where S is the particle spin. The introduction of this new quantum num-
ber R, besides preventing the violation of B and L, has an important phe-
nomenological consequence, especially from the point of view of the search of
a candidate for the dark matter: supersymmetric particles can be produced
only in couple from ordinary particles and they cannot decay in a state con-
taining only ordinary particles. This last property implies that the lightest
supersymmetric particle (LSP) is stable and thus can be a good candidate
for the dark matter.

2.8 Supersymmetry breaking

Any supersymmetric theory, in order to have phenomenological consequences,
must necessarily exhibit a supersymmetry breaking at some energy scale to
take into account the observational evidence that none of the superpartners
of the ordinary particles has been yet discovered. Yet we want the theory
free of quadratic divergences. There are two main mechanisms to realize
supersymmetry breaking: spontaneous supersymmetry breaking and soft su-
persymmetry breaking.

The spontaneous breaking of ordinary gauge symmetry is well under-
stood, but supersymmetry imposes additional conditions which need a more
careful analysis. These constraints rest on the property that the hamiltonian
of the supersymmetry generators Qα and Q̄α̇ is [35]:

H =
1

4

(
Q̄1Q1 +Q1Q̄1 + Q̄2Q2 +Q2Q̄2

)
(2.62)

that is a direct consequence of the supersymmetry algebra (2.16). The equa-
tion (2.62) tells us that:

〈Ψ|H |Ψ〉 ≥ 0

for every state |Ψ〉. Moreover, it tells us that state with vanishing energy
density are supersymmetric ground states of the theory. Such states are
ground states because the expectation value of H positive semidefinite. They
are supersymmetric states because Evac = 〈0|H |0〉 = 0 implying that that
the vacuum state is invariant:

Qα |0〉 = Q̄α̇ = 0 (2.63)

Ground states with Evac = 0 preserve supersymmetry, while those with
Evac > 0 break it spontaneously. The situation is sketched in figure (2.2).

Let us see briefly two examples of models that exhibit spontaneous su-
persymmetry breaking. The first one is a model that has been proposed
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Figure 2.2: Ground state of a theory that: (a) preserves supersymmetry
Evac = 0, (b) breaks supersymmetry spontaneously Evac > 0

by O’Raifeartaigh [46], constructed from chiral superfields and in which the
ground state breaks supersymmetry. We know that the scalar potential is
given by the equation (2.42) with the auxiliary field F ∗

k that satisfies the
equation of motion (2.43):

F ∗
k = −λk −mikAi − gijkAiAj (2.64)

Every vacuum expectation value of 〈Ai〉 = ai for which Fk = 0 defines the
supersymmetric minima of the scalar potential. To break supersymmetry we
must choose special values for the parameters λk, mik and gijk, that appear
in the equation of motion for F ∗

k , in such a way that the equation:

λk +mikai + gijkaiaj = 0 (2.65)

has no solutions in the VEVs ai. In order to have no solutions and so to break
supersymmetry [35][46], it is necessary to introduce three chiral superfields,
with the simplest model given by the following superpotential term:

LSP = λΦ1 +mΦ2Φ3 + gΦ1Φ2Φ3 + h.c. (2.66)

The second model has been proposed by Fayet and Iliopoulos [47]. They
have shown how to break supersymmetry spontaneously in gauge theories
with abelian gauge groups. The key point is that the θθθ̄θ̄ component of
a vector superfield is both supersymmetric and gauge invariant. If a term
2κV is added to an abelian theory, it leads to spontaneously supersymmetry
breaking.

Let us write the lagrangian:

L =
1

4

(
W αWα + W̄α̇W̄

α̇
)

+ Φ†
1e

qV Φ1 + Φ†
2e

−qV Φ2 +

+m
(
Φ1Φ2 + Φ†

1Φ
†
2

)
+ 2κV (2.67)
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where κ is a constant parameter with mass dimension d = 2 and q is the
charge associated to the abelian group. In this model the scalar potential is
then given by:

V =
1

2
D2 + F1F

∗
1 + F2F

∗
2 (2.68)

where D,F1 and F2 are solutions of the equations of motion:

D + κ+
q

2
(A∗

1A1 − A∗
2A2) = 0

F1 +mA∗
2 = 0

F2 +mA∗
1 = 0 (2.69)

It can be shown that there is no solutions, in terms of the scalar fields A1 and
A2, that makes the scalar potential vanish V = 0. In this way supersymmetry
is spontaneously broken.

However, in the general case, it is very difficult to build models with
spontaneously broken supersymmetry in which the superpartners of the or-
dinary particles acquire sufficiently high masses. One possible solution may
be given by theories with dynamical supersymmetry breaking (for a review
see for example [48] and [49]), but we will not discuss these kind of theo-
ries here. Instead, we will see that supersymmetry breaking can be realized
simply adding to the supersymmetric lagrangian (2.52) suitable terms the
explicitly break supersymmetry, yet leaving the theory linearly divergent.
These terms are called soft supersymmetry breaking terms and their general
classification can be found in [50].

It can be shown that the only possible soft terms are general combination
of mass dimension d = 2 built by the scalar fields components, Ai and Fi, of
a chiral superfield:

Lbreak = µ2
(
A2 + F 2

)
(2.70)

We have omitted the internal symmetry labels and use the symbolic notation
A2 = cijAiAj, and so on. This term accounts for a common mass term for
the spin-0 fields of a scalar multiplet. It is possible to write another term of
the same type:

Lbreak = µ2
(
A2 − F 2

)
(2.71)

which gives opposite contribution to the masses of A and F fields. Moreover
it is possible to introduce two other terms involving operators with mass
dimension d = 3. The first one is an F-term:

Lbreak = µλ̄λ (2.72)

that gives a mass term for the gaugino λ that appears in the vector mul-
tiplet. The second and last term that can be considered is an explicit non
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supersymmetric interaction term:

Lbreak = γ
(
A3 − 3AB2

)
(2.73)

that describes a trilinear coupling, with γ as coupling constant, between
scalar fields. This list essentially exhausts all cases of soft supersymmetry
breaking. The important result is that mass terms for the matter fermions
of the type:

Lbreak = µψ̄ψ (2.74)

can not be generated because they induce quadratic divergences for all mem-
bers of a scalar multiplet.

2.9 The Minimal Supersymmetric Standard

Model

We have discussed the general formulation of a theory both invariant under
N = 1 supersymmetry and arbitrary gauge transformations. The lagrangian
that describes such a theory has been written in the equation (2.52) plus the
soft supersymmetry breaking terms described in the previous section. We
know that the physics below 1 TeV is well described by the SM of the elec-
troweak and strong interactions, based on the gauge group SU(3)⊗SU(2)⊗
U(1). Therefore now we want to formulate the minimal supersymmetric
extension of the SM, the MSSM [36][37][51].

In the SM the matter fields are described by fermions with given chirality
and by the Higgs boson field (responsible for the mass generation mecha-
nism). The interactions between fields are mediated by the gauge vector
bosons. It is possible to insert these fields inside a supersymmetric formal-
ism in accordance with the following scheme:

SM field MSSM supermultiplet
fermion chiral

gauge vector boson vector
Higgs boson chiral

The fermions belong to the fundamental representation of the gauge
group, while the gauge vector bosons belong to the adjoint representation.
So it is not possible to put together fermions and vectors, inside the same
supermultiplet. Moreover, it is not even possible to insert the Higgs bosons
in the same chiral multiplet of the standard fermions because this does not
allow to obtain the right fermionic mass spectrum [45]. The crucial observa-
tion here is that in the SM left-handed fermions transform differently under
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the gauge group than the right-handed fermions. So they must be accommo-
date in different chiral supermultiplet. To every standard particle we must
associate a supersymmetric partner.

The names for the scalar partners of the quarks and leptons are con-
structed adding the prefix “s”, which is short for scalar. Thus generically
they are called squarks and sleptons (short for “scalar quark” and “scalar
lepton”). The left-handed and right-handed pieces of the quarks and leptons
are separate two-component Weyl fermions with different gauge transforma-
tion properties in the SM, so each must have its own complex scalar partner.
The symbols for the squarks and sleptons2 are the same as for the corre-
sponding fermion, but with a tilde used to denote the superpartner of a SM
particle. For example, the superpartners of the left-handed and right-handed
parts of the electron Dirac field are called left- and right-handed selectrons,
and are denoted ẽL and ẽR. It is important to keep in mind that left-handed
or right-handed here does not refer to the helicity of the selectrons (they are
scalar particles) but to that of their superpartners. A similar nomenclature
applies for smuons and staus: µ̃L, µ̃R, τ̃L, τ̃R. In the SM the neutrinos are
always left-handed, so the sneutrinos are denoted generically by ν̃, with a
possible subscript indicating which lepton flavor they carry: ν̃e, ν̃µ, ν̃τ . Fi-
nally, a complete list of the squarks is q̃L, q̃R with q = u, d, s, c, b, t. The
gauge interactions of each of these squark and slepton fields are the same as
those of the corresponding SM fermion; for instance, a left-handed squark
like ũL will couple to the W boson while ũR will not. It seems clear that the
Higgs scalar boson must reside in a chiral supermultiplet, since it has spin 0.
Actually, it turns out that one chiral supermultiplet is not enough. One way
to see this is to note that if there were only one Higgs chiral supermultiplet,
the electroweak gauge symmetry would suffer a triangle gauge anomaly, and
would be inconsistent as a quantum theory. This is because the conditions
for cancellation of gauge anomalies include

Tr[Y 3] = Tr[T 2
3 Y ] = 0,

where T3 and Y are the third component of weak isospin and the weak hy-
percharge, respectively, in a normalization where the ordinary electric charge
is QEM = T3 + Y . The traces run over all of the left-handed Weyl fermionic
degrees of freedom in the theory. In the SM, these conditions are already
satisfied, somewhat miraculously, by the known quarks and leptons. Now, a
fermionic partner of a Higgs chiral supermultiplet must be a weak isodoublet
with weak hypercharge Y = 1/2 or Y = −1/2. In either case alone, such a
fermion will make a non-zero contribution to the traces and spoil the anomaly

2from now on we will essentially use the notation of [38]
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cancellation. This can be avoided if there are two Higgs supermultiplets, one
with each of Y = ±1/2. In that case the total contribution to the anomaly
traces from the two fermionic members of the Higgs chiral supermultiplets
will vanish.

We will call the SU(2) doublet complex scalar fields corresponding to
these two cases Hu and Hd respectively. The weak isospin components of
Hu with T3 = (+1/2, −1/2) have electric charges 1, 0 respectively, and
are denoted (H+

u , H0
u). Similarly, the SU(2) doublet complex scalar Hd

has T3 = (+1/2, −1/2) components (H0
d , H−

d ). The neutral scalar that
corresponds to the physical SM Higgs boson is in a linear combination of H0

u

and H0
d . The generic nomenclature for a spin-1/2 superpartner is to add the

suffix “-ino” to the name of the SM particle, so the fermionic partners of
the Higgs scalars are called higgsinos. They are denoted by H̃u, H̃d for the
SU(2) doublet left-handed Weyl spinor fields, with weak isospin components

H̃+
u , H̃0

u and H̃0
d , H̃−

d .
This exhausts the classification of the chiral supermultiplets of the MSSM.

The matter content of the theory can be summarized in table 2.1, which gives
the transformation properties of the SM fields with respect to the gauge
group.

Supermultiplet spin 0 spin 1/2 SU(3) ⊗ SU(2) ⊗ U(1)

Qi

(
ũL d̃L

)
(uL dL) (3, 2, 1/6)

ūi ũ∗R u†R (3̄, 1,−2/3)

d̄i d̃∗R d†R (3̄, 1, 1/3)

Li (ν̃ ẽL) (ν eL) (1, 2,−1/2)

ēi ẽ∗R e†R (1, 1, 1)

Hu (H+
u H0

u)
(
H̃+

u H̃0
u

)
(1, 2, 1/2)

Hd

(
H0

d H
−
d

) (
H̃0

d H̃
−
d

)
(1, 2,−1/2)

Table 2.1: MSSM chiral supermultiplets

In the first row of table 2.1 we have put the chiral superfields that contain
the component fields indicated in the other rows, i = 1, 2, 3 is a family index.
We have followed the standard convention that all chiral supermultiplets are
defined in terms of left handed Weyl spinors, so that in the table there are
the conjugates of the right handed quarks and leptons.

The chiral superfield Q, neglecting now the family indices and the gauge
indices, stands for an SU(2) doublet chiral supermultiplet, can be written,
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in terms of component fields, as:

Q = q̃L +
√

2θqL + θ2F (q) (2.75)

where q = u for the weak isospin component T3 = +1/2, q = d for the weak
isospin component T3 = −1/2 and F (q) is the associated auxiliary field. The
superfield ū, instead, stands for the SU(2) singlet supermultiplet:

ū = ũ∗R +
√

2θu†R + θ2F (ū) (2.76)

where the bar we have used to denote fields, is a part of the field name and
does not denote any type of conjugation.

The vector bosons of the SM clearly must reside in gauge supermulti-
plets. The fermionic superpartners are referred as gauginos. The SU(3)
color gauge interactions of QCD are mediated by the gluon g, denoted
as g̃. The electroweak gauge symmetry SU(2) ⊗ U(1) possesses as gauge
bosons W+, W 0, W− and B0. The corresponding spin 1/2 superpartners

W̃+, W̃ 0, W̃− and B̃0 are called, respectively, winos and bino. After elec-
troweak symmetry breaking, the W 0 and B0 gauge eigenstates mix to give
mass eigenstates Z0 and γ. The corresponding gaugino mixtures of W̃ 0 and
B̃0, denoted by Z̃0 and γ̃, are called, respectively, zino and photino: if super-
symmetry were unbroken, they would be mass eigenstates with masses mZ

and 0. In the table 2.2, we have summarized the gauge supermultiplets of
the MSSM.

Fields spin 1/2 spin 1 SU(3) ⊗ SU(2) ⊗ U(1)

gluino, gluon g̃ g (8, 1, 0)

winos, W bosons W̃± W̃ 0 W± W 0 (1, 3, 0)

bino, B boson B̃0 B0 (1, 1, 0)

Table 2.2: MSSM gauge supermultiplets

The chiral and gauge supermultiplets appearing in tables 2.1 and 2.2
completely describe the particle content of the MSSM. We have already seen
that in a renormalizable supersymmetric theory, the interactions and masses
of all particles are determined just by their gauge transformation properties,
that in the case of the MSSM are given by the SU(3)⊗ SU(2)⊗U(1) gauge
group, and by the superpotential W , that appear in the most general N = 1
supersymmetric lagrangian that we have written in the equation (2.52).
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The superpotential W is a function of chiral superfields only, and so it
determines every non gauge interactions of the theory:

W =
1

2
mijΦiΦj +

1

2
yijkΦiΦjΦk (2.77)

Here we have slightly changed the notation to stress that the superpoten-
tial determines not only the scalar interactions but the fermion masses and
Yukawa couplings as well. Thus, once the supermultiplet content of theory
is given, the form of the superpotential is constrained by gauge invariance,
and so only a subset of the couplings mij and yijk are allowed to be non
zero. For example the entries of the mass matrix mij can only be non zero
for i and j such that the superfields Φi and Φj transform under the gauge
group in representations that are conjugate of each other3. Likewise, the
Yukawa couplings yijk can only be non zero when Φi, Φj and Φk transform
in representations which can combine to form a singlet.

The superpotential for the MSSM is given by:

WMSSM = µHuHd +
(
yuūQHu − ydd̄QHd − yeēLHd

)
(2.78)

where the fields that appear in this equation are the chiral superfields defined
in table 2.1 and where we have suppressed all the gauge and family indices.
The dimensionless Yukawa couplings yu, yd and ye are 3×3 matrices in family
space. The first term in equation (2.78) is the so called “µ term”, and it is
the only allowed mass term. It is the supersymmetric analogue of the Higgs
mass term, and it essentially unique because terms like H∗

uHu or H∗
dHd are

forbidden in the superpotential (2.78), which is an analytic function of chiral
superfields. It can be written in terms of an SU(2) doublet as:

µHuHd = µεαβ (Hu)α (Hd)β (2.79)

where εαβ is the SU(2) metric. In an analogous way, the second term, that
is a Yukawa type term can be written as:

yuūQHu = εαβūi
a (yu)

j
i Q

a
jα (Hu)β (2.80)

where now we have explicitly written the family indices i = 1, 2, 3 and the
SU(3) gauge indices a = 1, 2, 3 of the fundamental representation 3.

The Yukawa matrices determine the masses and CKM mixing angles of
the ordinary quarks and leptons, after the neutral scalar components of Hu

and Hd get VEVs. Since the top quark t, the bottom quark b and the τ

3in fact we will see that in the MSSM there is only one possible term of this type
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lepton are the heaviest fermions in the SM, it is often useful to make an
approximation that only the (3, 3) family components of yu, yd and ye are
important:

yu ∼




0 0 0
0 0 0
0 0 yt


 yd ∼




0 0 0
0 0 0
0 0 yb


 ye ∼




0 0 0
0 0 0
0 0 yτ




(2.81)
In this limit, only the third family and Higgs fields contribute to the MSSM
superpotential. However, it is useful to remember that the dimensionless
interactions determined by the superpotential (2.78) are often not the most
important ones from the phenomenological point of view. In fact the Yukawa
couplings are very small, except for those of the third family. Instead, the
decay and production processes of superpartners in the MSSM are typically
dominated by the supersymmetric interactions of gauge coupling strength.
The couplings of the SM gauge bosons to the MSSM particles are completely
determined by the gauge invariance of the kinetic terms in the lagrangian
[37].

There are also various scalar quartic interactions in the MSSM which are
uniquely determined by gauge invariance and supersymmetry. They are dic-
tated by the scalar potential defined in the equation (2.42). The dimensionful
terms in the supersymmetric part of the MSSM lagrangian are all dependent
on µ, that appears in the generalization of the Higgs mass term of the MSSM
superpotential (2.78). We find that µ gives the higgsino mass terms in the
MSSM lagrangian:

L ⊃ −µ
(
H̃+

u H̃
−
d − H̃0

uH̃
0
d

)
+ c.c. (2.82)

as well as Higgs mass square terms in the scalar potential

−L ⊃ V ⊃ |µ|2
(
|H0

u|2 + |H+
u |2 + |H0

d |2 + |H−
d |2
)

(2.83)

where V is the scalar potential of equation (2.42). Since the Higgs part
of the scalar potential is positive definite, we cannot understand electroweak
symmetry breaking without including soft supersymmetry breaking terms for
the Higgs scalars, which can be negative. So to complete the description of
the MSSM, we need to specify the soft supersymmetry breaking, of the type
allowed that we have found in section (2.8). The soft breaking lagrangian
can thus be written as [38]:

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃ W̃ +M1B̃B̃

)
+ c.c
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−
(
˜̄uau Q̃Hu − ˜̄d ad Q̃Hd − ˜̄e ae L̃Hd

)
+ c.c.

−Q̃†m2
Q Q̃− L̃†m2

L L̃− ˜̄um2
ū
˜̄u† − ˜̄dm2

d̄
˜̄d
†

− ˜̄em2
ē
˜̄e†

−m2
Hu
H∗

uHu −m2
Hd
H∗

dHd − (bHuHd + c.c.) (2.84)

where M1, M2 and M3 are the bino, wino and gluino mass terms and we have
suppressed all the gauge indices. The second line of equation (2.84) contains
the trilinear scalar couplings. Each of au, ad and ae is a complex 3 × 3
matrix in family space, with mass dimension d = 1. These matrices are in
one-to-one correspondence with the Yukawa coupling matrices that appear in
the superpotential (2.78). The third line of the equation (2.84) contains the
squark an slepton squared mass terms. Each of m2

Q, m2
L, m2

ū, m
2
d̄

and m2
ē is a

3×3 matrix in family space4 which in general can have complex entries.Since
the lagrangian must be real, these matrices are hermitian. Finally the last
line of equation (2.84) contains the supersymmetry breaking contributions
to the Higgs potential: m2

Hu
, m2

Hd
and b (usually indicated in the literature

as Bµ) are the only squared mass terms that can occur in the MSSM.
To summarize this discussion about the soft supersymmetry breaking, we

must show the order of magnitude of all these terms:

M1, M2, M3, au, ad, ae ∼ msoft (2.85)

m2
Q, m

2
L, m

2
ū, m

2
d̄, m

2
ē, m

2
Hu
, m2

Hd
, b ∼ m2

soft (2.86)

where msoft is the characteristic mass scale of supersymmetry breaking which
is of the order ∼ 1 TeV, in order to continue to solve the hierarchy problem
[37]. The soft breaking lagrangian (2.84) has the most general form which
is compatible with gauge invariance and with R-parity, defined in (2.61),
conservation.

In contrast to the supersymmetry preserving part of the lagrangian (2.52),
the soft lagrangian (2.84) introduces many new parameters which were not
present in the ordinary SM. A careful count (see [52]) reveals that in the
MSSM lagrangian there are 105 new parameters, respect to the ordinary
SM, that cannot be rotated away by redefining the phases and flavor basis
for the quark and lepton supermultiplets. Thus, in principle, supersymmetry
breaking introduces a huge arbitrariness in the lagrangian.

But we can reduce some of this arbitrariness because most of the new
parameters can be constrained by the request that there is no flavor mixing
or CP violation of the type which is already restricted by experiments [53].
All these dangerous effects can be evaded assuming the the supersymmetry

4to avoid an heavy notation we have neglected the tilde over the name of the scalar
fields, like, for example Q.
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breaking is “universal”. This means that the squark and slepton masses are
flavor blind, so they should be each proportional to the the 3 × 3 identity
matrix in family space:

(
m2

Q

)j
i

= m2
Q 13×3

(
m2

ū

)j
i

= m2
ū 13×3

(
m2

d̄

)j
i
= m2

d̄ 13×3
(
m2

L

)j
i

= m2
L 13×3

(
m2

ē

)j
i
= m2

ē 13×3 (2.87)

where i, j = 1, 2, 3 are the family indices. In this way all squark and slepton
mixing angles are rendered trivial, because squarks and sleptons with the
same electroweak quantum numbers will be degenerate in mass and can be
rotated into each other. In such limit, supersymmetric contributions to flavor
changing processes will therefore be very small.

Moreover, one can make the further assumption that the trilinear scalar
couplings are each proportional to the corresponding Yukawa couplings:

au = Au0 yu ad = Ad0 yd ae = Ae0 ye (2.88)

This ensures that only the squarks and sleptons of the third family can
have large trilinear couplings. Finally, one can avoid disastrously large CP
violating effects assuming that the soft parameters do not introduce new
complex phases, i.e.:

arg (M1) , arg (M2) , arg (M3) , arg (Au0) , arg (Ad0) , arg (Ae0) = 0, π
(2.89)

The only CP violating phase in the theory will be the ordinary CKM phase
found in the ordinary Yukawa couplings. The relations (2.87), (2.88) and (2.89)
make up the so called assumption of soft breaking universality.

The origin of the supersymmetry breaking terms and the soft breaking
universality relations seems to require an underlying theory that must ex-
plain, at the end, the peculiar scale msoft ∼ 1 TeV. Moreover it remains to
explain the origin of the µ-term in the Higgs sector of the scalar potential
that appears in the equation (2.83). In fact, we expect that µ should be
roughly of the order of 102 or 103 GeV, in order to allow an Higgs VEV of
order of 174 GeV without a fine tuning between |µ|2 and the negative mass
squared terms in the last line of the soft lagrangian (2.84). The MSSM scalar
potential seems to depend on two types of dimensionful parameters which
are conceptually quite distinct, namely the supersymmetry respecting mass
µ and the supersymmetry breaking soft mass term msoft. The so called µ
problem refers to the fact that this two unrelated parameters are of the same
order of magnitude. Several different solutions of the µ problem has been
proposed [54][55][56]. However, from the phenomenological point of view we
will treat µ as an independent parameter without asking his origin.
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Chapter 3

Supersymmetry and RG

3.1 Introduction

In the previous chapter we have shown how to build a supersymmetric theory
and, in particular a minimal supersymmetric extension of the SM, with the
same ordinary particle content. We have seen that the crucial feature that
allows the MSSM to have a phenomenological predictive power is the presence
of the soft supersymmetry breaking terms LMSSM

soft . We have put these terms
by hand into the full lagrangian. This is quite an ad hoc procedure and it
determines an huge increase of the number of free parameters that define
the theory. In order to understand the origin of the soft breaking terms
we must consider an underlying theory, for which the MSSM is only a low
energy limit. This underlying theory is usually defined at some very high
energy scale, such as the unification scale MGUT ∼ 1016 GeV. The number
of parameters that define this theory, given at the input high energy scale,
are much less of that of the MSSM. This allows for a great simplification of
all the analysis that we can perform in this theoretical framework.

If we use the high energy lagrangian to compute masses and cross sec-
tions for experiments at the common electroweak energy scale, the results
will involve large logarithms corrections coming from the loop diagrams. To
avoid this problem we can use a very powerful tool in quantum field theory:
the renormalization group (RG). Using the RG we can conveniently resum
the large logarithms, by treating the couplings and masses that appear in the
lagrangian as running parameters, i.e. functions of the energy scale. There-
fore the universality relations (2.87), (2.88) and (2.89) have to be treated
as boundary conditions on the running soft parameters defined at the high
energy scale, which is very far removed from direct experimental probes. The
RG allows to evolve all of the soft parameters, the superpotential parameters
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and the gauge couplings down to the electroweak scale or comparable scales
where the experiments can be performed.

In this chapter we review the RG concepts, starting from the ordinary
non supersymmetric field theories and ending with the supersymmetric case.
In particular we will study the evolution of the soft breaking parameters and
we will choose a particular model for the origin of these terms.

3.2 RGE from Callan-Symanzik equations

In this first section we want to describe how to derive the renormalization
group equations (RGE) starting from the so called Callan-Symanzik equa-
tions. This is a very interesting and useful approach in order to obtain, for
example, the β-functions of an arbitrary theory. We start with applying this
method to a simple gauge theory: the abelian case U(1).

It is well known that in any model of particle physics, if radiative correc-
tions, that is corrections beyond the leading tree level order, are to be taken
into account, some renormalization procedure must be implemented. Let us
start with a lagrangian written in terms of bare parameters (bare masses and
couplings) and bare fields. The bare mass mb and coupling eb are replaced
by the renormalized parameters m and e, and the associated counterterms,
δm and δe with:

mb = m + δm eb = e+ δe

while the bare fields are equal to the renormalized fields multiplied by a wave
function renormalization factor:

ψb = Z1/2ψ

The value of the counterterms has to be specified at some energy scale,
that is usually called renormalization scale. In general, it is convenient to
evaluate the renormalization conditions at p2 = −M2, in term of an arbitrary
renormalization mass scale M . Let’s consider the renormalized n-point Green
function expressed as a function of the mass scale M and of the coupling
constant1 g:

G(n) = G(n) (x1, . . . , xn;M, g)

The Callan-Symanzik equation (from now on CS) for a massless theory with
a dimensionless coupling can be written as:[

M
∂

∂M
+ β

∂

∂g
+ nγ

]
G(n) (x1, . . . , xn;M, g) = 0 (3.1)

1to simplify the analysis we consider a theory with only one coupling constant. The
generalization to the case of more than one coupling is straightforward: there is a γ term
for each field and a β term for each coupling
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where the parameters β and γ are the same for every n and must be inde-
pendent from the space-time coordinates xi. We refer to them, respectively,
as the β-function and the so called anomalous dimension. Moreover, because
the G(n) is a renormalized Green function, β and γ cannot depend from the
cut-off, and from dimensional analysis they cannot depend from the mass
scale M . Hence, the only possible dependence is from the coupling constant
g. A consequence of the CS equation is that β and γ are two universal func-
tions of the theory, related to the shift in the coupling constant and field
strength, that compensates the shift in the renormalization scale M :

β = β (g)

γ = γ (g) (3.2)

The CS equation (3.1) generalizes without difficulty to other massless
theories with dimensionless couplings. In theories with multiple fields and
couplings, there is a γ term for each field and a β term for each coupling. Let
us see what is the result of applying the CS equation in the case of QED de-
fined in the zero electron mass limit by using the same renormalization scale
p2 = −M2. Then the renormalized Green’s functions satisfy the following
CS equation:
[
M

∂

∂M
+ β(e)

∂

∂e
+ nγ2(e) +mγ3(e)

]
G(n,m) (x1, . . . , xn;M, e) = 0 (3.3)

where e is the usual QED coupling constant, n and m are, respectively, the
number of electron and photon fields in the Green’s function G(n,m) and γ2

and γ3 are the anomalous dimensions associated to the electron and photon
fields. It is a well known result that the photon propagator can be written,
in the t’Hooft-Feynman gauge, as:

Dµν(q) = D(q)

(
gµν − qµqν

q2

)
+

−i
q2

qµqν

q2
(3.4)

where the last term does not contribute to gauge invariant observables.
Hence, we can concentrate on the first term, projected onto the transverse
component. In this way, it is easy to check that (3.4) indeed satisfy the CS
equation (3.1). At leading order, we have to compute the γ2 and γ3 functions
associated, respectively, to the two counterterms δ2 and δ3:

γ2 =
1

2
M

∂

∂M
δ2, γ3 =

1

2
M

∂

∂M
δ3

where δ2 and δ3 are associated to the diagrams shown in figure 3.1.
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a)

b)

Figure 3.1: Counterterms for: a) photon propagator −i (gµνq2 − qµqν) δ3, b)
fermionic propagator i (6pδ2 − δm).

In an analogous way, we can consider the 3-points connected Green func-
tion

〈
ψ̄ (p1)ψ (p2)Aµ (q)

〉
projected onto the transverse component, that at

leading order is:

〈
ψ̄ (p1)ψ (p2)Aµ (q)

〉
=

i

6p1
(−ieγµ)

i

6p2

−i
q2

(
gµν − qµqν

q2

)

By applying the CS equations (3.3), we find that the β-function for the QED
coupling constant can be written, as a function of the lagrangian countert-
erms, as:

β(e) = M
∂

∂M

(
−δg +

1

2
g
∑

δZi

)
(3.5)

In QED we have the following relations for the counterterms:

δZ1
= δ1 = Z1 − 1 = δg

δZ2
= δ2 = Z2 − 1

δZ3
= δ3 = Z3 − 1

so that the β-function for the QED coupling become:

β(e) = M
∂

∂M

[
−δ1 +

e

2
(2δ2 + δ3)

]

= M
∂

∂M

(
−δ1 + eδ2 +

e

2
δ3

)
(3.6)

The counterterms can be evaluated with dimensional regularization and
using the renormalization conditions for massless fermions (we are interested
only to the gauge coupling constant), for the euclidean momentum p2 =
−M2. We have:

e−1δ1 = δ2 = − e2

(4π)2

Γ(2 − d/2)

(M2)2−d/2
+ (finite terms)

δ3 = −4

3

e2

(4π)2

Γ(2 − d/2)

(M2)2−d/2
+ (finite terms) (3.7)
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while for the anomalous dimensions, we obtain:

γ2(e) =
e2

16π2
γ3(e) =

e2

12π2
(3.8)

where d = 4 − ε and Γ is the Euler function.
Putting the counterterms relations (3.7) into the expression for the β-

function (3.6), we obtain the well known result for the β-function of the
QED coupling constant:

β(e) =
e3

12π2
(3.9)

We want to recall that this result is obtained using the Feynman gauge
and this is crucial in the computation of δ2, because it is the counterterm
associated to the fermion propagator. On the other hand, the QED vacuum
polarization, and therefore γ3 and β are gauge invariant.

Starting form the CS equations we can obtain the differential equation
that describes the flow of a modified coupling constant, that is function of
the renormalization scale p2 = −M2 at which is evaluated. We can formally
refer to it as the so called running coupling constant:

g = g(p; g)

The rate of changing of this function as a function of M is dictated ex-
actly by the β-function, that solves the following equation, together with the
boundary conditions:

d

dlog(p/M)
g(p; g) = β(g), g(p; g) = g (3.10)

This equation is called the renormalization group equation (RGE).

3.3 Thresholds in RGE

We have seen in the previous section that the dependence of the β-function
from the explicit renormalization scale M is through the counterterms. The
analysis has been done restricting to quantum field theories in the massless
limit. It is not difficult to generalize this formalism to theories with mass
terms and other operators, whose coefficients have positive mass dimension.
But in this case the renormalization scheme has to be carefully taken into
account, because of the presence of new mass scales. In fact, using a mass
independent subtraction scheme, there is no decoupling of the massive par-
ticles, and the Appelquist-Carazzone theorem cannot be applied [58]. This
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is quite obvious because the particle contribution to the β-function does not
depend from the particle mass. So if we wish to use a mass independent renor-
malization scheme, such as the MS (Minimal Subtraction) or MS (Modified
Minimal Subtraction), in order to obtain, at every energy scale, the effective
theory, me must put by hand in our equations the particle content of the
theory at that energy, removing the heaviest particles. At the end we want
to replace the full theory with a succession of effective theories.

Let us see the meaning of the last quite fuzzy assertion in a simple case.
We concentrate on the one loop contribution of a fermion of mass m to the
QED coupling constant β-function. We have already obtained the result (3.9)
using the CS equation.

If we evaluate the amplitude using dimensional regularization (so that
the Ward identities are satisfied), we have:

i
e2

2π2

(
qµqν − q2gµν

) [ 1

6ε
− γ

6
−
∫ 1

0

dxx(1 − x)log

(
m2 − q2x(1 − x)

4πµ2

)]

(3.11)
where q is the external momentum, m is the fermion mass, γ is the Euler-
Mascheroni constant and µ is the scale parameter that appears in the dimen-
sional regularization. We can see that the amplitude is of the form:

(
qµqν − q2gµν

)
Πµν

(
q2
)

Now we have to renormalize the amplitude. Let us choose firstly a mass
dependent renormalization scheme, imposing an arbitrary cut-offM . In order
to cancel the divergent part we must subtract the amplitude computed for
an external euclidean momentum q2 = −M2, obtaining:

i
e2

2π2

(
qµqν − q2gµν

) [∫ 1

0

dxx(1 − x)log

(
m2 − q2x(1 − x)

m2 +M2x(1 − x)

)]
(3.12)

We can obtain the fermionic contribution to the β-function applying the
operator (e/2)M∂/∂M on the coefficient of (qµqν − q2gµν). The result shows
an actual dependence from the renormalization scale M :

β(e;m2/M2) =
e3

2π2

∫ 1

0

dxx(1 − x)
M2x(1 − x)

m2 +M2x(1 − x)
(3.13)

We can consider two different regimes: in the case m � M , i.e. the
fermion mass flowing in the loop is much smaller than the renormalization
scale, the β-function simplifies to:

β(e;m2/M2) ∼ e3

2π2

∫ 1

0

dxx(1 − x) =
e3

12π2
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that is the result already obtained in (3.9). In the other case, M � m,
the renormalization scale becomes lower than the fermionic mass m, and the
fermionic contribution to the β-function goes to zero as:

β(e;m2/M2) ∼ e3

2π2

∫ 1

0

dxx(1 − x)
M2x(1 − x)

m2
=

e3

60π2

M2

m2

The effect of the presence of a threshold, as can be seen in figure 3.2, is
thus to “smooth” the β-function that interpolates the two limiting cases. So
a mass dependent renormalization prescription has the property of a manifest
decoupling of the heavy particles.

2 4 6 8 10

0.002

0.004

0.006

0.008

β(e)

M

Figure 3.2: β-function (arbitrary rescaled) for the QED coupling, in a pres-
ence of a fermion of mass m, as a function of the renormalization scale M

Now we try to evaluate the fermionic contribution to the β-function in a
mass independent renormalization scheme, such as the MS. In this scheme
the recipe is simply to subtract the 1/ε pole and to redefine 4πµ2exp(−γ) →
µ2, having:

−i e
2

2π2

(
qµqν − q2gµν

) [∫ 1

0

dxx(1 − x)log

(
m2 − q2x(1 − x)

µ2

)]
(3.14)

We can obtain the β-function in the same way we have previously seen, by
applying the operator (e/2)µ∂/∂µ on the coefficient of (qµqν − q2gµν). The
result is:

β(e) =
e3

2π2

∫ 1

0

dxx(1 − x) =
e3

12π2
(3.15)

that is, as we expected, independent from the fermion mass m and from
the renormalization scale µ. In this case the fermionic contribution to the
β-function doesn’t vanish when m� µ, and so there is no decoupling of the
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heavy particle. There is another difficulty with the MS scheme. The finite
part of the loop diagram for q → 0 is:

−i e
2

2π2

(
qµqν − q2gµν

) [∫ 1

0

dxx(1 − x)log

(
m2

µ2

)]

and we can see explicitly that when µ� m there is a logarithmic divergence
and so the perturbation theory breaks down. This behavior is a consequence
of the fact that the coupling constant used in the low energy limit is not the
“correct” one, because it was obtained with the “wrong” β-function. The
two problems, namely the logarithmic corrections and the inconsistency of
the perturbation theory, can be simultaneously resolved integrating out the
heavy particle: there is one effective theory that includes the fermion for
m < µ and one that doesn’t include the fermion for m > µ. The effects of
the heavy particle in the low energy theory are reproduced considering, in
the lagrangian, operators with higher dimension, which are suppressed by
inverse powers of the heavy particle mass. The matching condition for the
two theories at the scale m is determined by the equality of the elements
of the S matrix for the light particle scattering, computed both in the low
energy theory without the heavy particle and in the high energy theory with
the heavy particle. In other words the heavy particle decoupling, in any mass
independent regularization scheme such as the MS, must be implemented by
hand integrating out the heavy particle for µ < m. One possible choice is to
use a step θ function that can mimic in a rough way the behavior of figure 3.2.
The β-function, in this case, can be simply written as:

β(e) =

{
e3/12π2 for µ > m
0 for µ < m

3.4 β-functions in non abelian gauge theories

In this section we extend the results previously obtained for an abelian gauge
theory, such as QED, to a non abelian gauge theory. This result is important
because it can be immediately applied to the SM, with the gauge group
SU(3) ⊗ SU(2) ⊗ U(1), and to every supersymmetric extension of the SM
with the same gauge group, such as the minimal one, i.e. the Minimal
Supersymmetric SM (MSSM). The method we used is straightforward, but
there is another, more abstract, approach: the Wilson method, based on the
idea of integrating out the massive degrees of freedom. The results are the
same and the two approaches are completely equivalent (see for example any
standard textbook [61]).
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Let us consider a theory with only one gauge coupling constant g and with
nf fermion species, that transforms in a representation r of a gauge group
G. As usual in gauge theory r coincide with the fundamental representation.
The generators of the group, or more properly the generators of the associated
Lie algebra, ta, satisfies the identity:

[
ta, tb

]
= if abctc

where fabc is the structure constant of the group. There are two other useful
relations that will be used later:

tr
[
tatb
]

= C(r)δab

facdf bcd = C2(G)δab (3.16)

where C(r) is the index of the representation r and C2(G) is the second
casimir operator in the adjoint representation.

At leading order, that is at 1-loop order, we have for the β-function a
generalization of the equation (3.6):

β(g) = gM
∂

∂M

(
−δ1 + δ2 +

1

2
δ3

)
(3.17)

where we have used the conventions of figure 3.3 for the counterterms δ1, δ2
and δ3.

Figure 3.3: QED counterterms

From left to right, the first diagram is equal to −i (k2gµν − kµkν) δabδ3,
the second one is equal to i 6p δ2 and the last one is equal to igtaγµδ1. In QED,
using the Ward identity g−1δ1 = δ2, we find that the β-function depends only
from δ3. In the non abelian case, instead, there is a contribution from every
terms. So, in order to cancel the divergences that appear in the 1-loop pure
gauge amplitude, δ3 must be of the form:

δ3 =
g2

(4π)2
Γ(2 − d/2)

(M2)2−d/2

[
5

3
C2(G) − 4

3
nfC(r)

]
(3.18)
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where M is the renormalization scale. Depending on the renormalization
scheme used, there can be finite contributions to δ3, δ2 and δ1, but the
β-function contribution is scheme independent, because only the divergent
parts have an explicit dependence from M . If we use dimensional regulariza-
tion, the logarithmic divergences take the form:

Γ(2 − d/2)

(∆)2−d/2

where ∆ is an arbitrary combination of momentum invariants. We have seen
that one possible choice is ∆ = M 2.

The next step consists in computing the δ2 and δ1 counterterms, that are
necessary in order to cancel the divergences coming from the diagrams that
involve fermions. At 1-loop order in a non abelian gauge theory, we have to
consider three such diagrams, as can be seen in figure 3.4.

Figure 3.4: Fermionic counterterms

The δ2 counterterm cancels the divergence in the first diagram, that is
the fermionic self energy contribution. At the renormalization scale M we
have:

δ2 = − g2

(4π)2
Γ(2 − d/2)

(M2)2−d/2
· C2(r) (3.19)

where C2(r) is the quadratic casimir operator of the representation r. The
δ1 counterterm cancels the divergences associated to the second and to the
third diagram of figure 3.4. The result can be written as:

δ1 = − g2

(4π)2
Γ(2 − d/2)

(M2)2−d/2
· [C2(r) + C2(G)] (3.20)

and we can see that, unlike the abelian case, δ1 6= δ2, because δ1 has an extra
term proportional to C2(G) (the gauge bosons are “colored”). The β-function
is obtained summing the three contributions coming from the counterterms,
remembering that the only dependence from M is in the logarithmic term,
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that in dimensional regularization assumes the form:

Γ(2 − d/2)

(M2)2−d/2
∼ 2

ε
− log

(
M2
)
− γ

At the end we obtain:

M
∂

∂M

(
Γ(2 − d/2)

(M2)2−d/2

)
∼M

∂

∂M

(
2

ε
− log

(
M2
)
− γ

)
= M

∂

∂M
log
(
M2
)

= 2

and so:

β(g) = (−2)
g3

(4π)2

[
(C2(r) + C2(G)) − C2(r) +

1

2

(
5

3
C2(G) − 4

3
nfC(r)

)]

= − g3

(4π)2

[
11

3
C2(G) − 4

3
nfC(r)

]
(3.21)

The previous calculation, that is a well known result, has been performed
starting from the divergences of the fermion vertices (associated to the δ3

counterterm) and from the divergences of the field strength (associated to
the counterterms δ1 and δ2). The same result for the β-function could be
obtained starting from the divergences of the gauge bosons vertex. This is a
common feature in every gauge theory.

The equation (3.21) refers only to a single coupling constant associated
with the gauge group G. We can immediately extend this result, as was
noted in section 3.2, in the case of the direct product of gauge groups G =
G1⊗ . . .⊗Gn with n coupling constants g1 . . . gn. We simply obtain, for every
gi associated to the corresponding subgroup Gi, a β-function of the same
form of (3.21) with G → Gi and considering the appropriate representation
for the nf fermions coming from the transformation properties under the
gauge group Gi.

In the SM case we must consider the representation of SU(3)⊗ SU(2)⊗
U(1). So, let us consider the general case of SU(N). It is possible to shown
that for the fundamental representation, that could be labelled by N , we
have:

C(N) =
1

2
, C2(N) =

N2 − 1

2N
(3.22)

while for the quadratic casimir of the adjoint representation, we obtain:

C2(G) = C(G) = N (3.23)
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and so the β-function, for a theory with nf fermions in the fundamental
representation and ns real scalars2, that transforms in a representation r′,
can be written as:

β(g) = − g3

(4π)2

[
11

3
N − 2

3
nf − 1

6
nsC (r′)

]
(3.24)

We are now able to write down the 1-loop β-functions for the SM gauge
couplings:

β(gi) =
1

(4π)2 big
3
i (3.25)

and the corresponding 1-loop RG equations:

d

dt
gi =

1

(4π)2 big
3
i (3.26)

with t = log(M/M0) (M0 is some convenient renormalization scale where the
boundary conditions are defined) and where we have introduced the constant
coefficients bi that are determined only by the particle content of the theory.
The index i = 1, 2, 3 runs over the gauge couplings g1, g2, g3. The g1 and
g2 couplings can be written, in terms of the conventional electroweak gauge
couplings g and g′ (with e = gsin θW = g′cos θW ), as:

g1 =

√
5

3
g′, g2 = g

Introducing the number of generations of matter multiplets Nfam = 2nf and
the number of Higgs doublets NHiggs = ns, it’s quite easy to see that the SM
coefficients are:

bSM
i =

(
44

10
,
−19

6
,−7

)
(3.27)

where we have used Nfam = 3 and NHiggs = 1.
One important consequence of this result is that the SM cannot ensure

the unification of the coupling constant at some very high energy scale.

3.5 Renormalization group and supersymme-

try

Many calculations beyond the three level involves mass independent regular-
ization scheme such as the dimensional regularization, usually called DREG

2In the SM there is at least a scalar: the Higgs boson
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or known as ’naive dimensional reduction’, that is an elegant and conve-
nient way to deal with the infinities that arise in quantum field theory [74],
in which the number of space-time dimensions is analytically continued to
d = 4−ε. It is very well adapted to gauge theories because it preserves gauge
invariance, but it is not so well suited for supersymmetric theories, because
the supersymmetric transformations holds in general only for fixed values of
the space-time dimensions d. In fact it introduces a mismatch between the
off shell numbers of gauge boson degrees of freedom and the gaugino degrees
of freedom. This mismatch is of order ε, but if we consider an n-loop calcula-
tion, it introduce an error of order 1/εn. So it becomes clear the importance
to choose a regularization and renormalization scheme that do not explicitly
violate supersymmetry.

The solution consist in modifying the procedure of dimensional regu-
larization, in which the continuation from 4 to d space-time dimensions is
performed with compactification, or stated otherwise via dimensional reduc-
tion. In this method, that is called DRED, the momentum integrals are d
dimensional, while the number of field components remain unchanged and
so supersymmetry still holds. There exist a set of transformations that are
able to relate β-functions of a particular theory calculated with the DRED

scheme to the β-functions of the same theory computed using the DREG

scheme.
The notation usually employed makes use of greek indices µ, ν . . . to de-

note the d = 4 space-time, while latin indices i, j . . . denote the d = 4 − ε
space-time, with corresponding metric tensors gµν and gij. It’s useful to in-
troduce the hatted quantities like ĝµν and γ̂µ, that are equal respectively to
gij and γi in the subspace d = 4 − ε while the other components are zero.
The momentum pµ is defined only in the subspace d = 4 − ε, so there is no
need to use the hat notation.

There are interesting relations between the dimensional reduced quanti-
ties and the four dimensional one:

6p = pµγ
µ = pµγ̂

µ

gµνg
µν = 4

ĝijĝ
ij = d

ĝµνg λ
ν = ĝµλ

ĝµνγν = γ̂µ (3.28)

Having introduced this notation we are able to see how DRED works in
the case of a non supersymmetric (so without elementary scalars) Yang-Mills
theory with a set of fields W a

µ (x) transforming in the adjoint representation of
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a gauge group G, and with a multiplet of spin 1/2 fields ψα(x) transforming
in a representation r of the same semi-simple gauge group G. If in particular
ψ is Majorana, then r has to be a real representation, since the Majorana
condition is not preserved by a unitary transformation. The gauge fixed bare
lagrangian can be written as:

LB = −1

4
G2

µν −
1

2
(∂µWµ)2 + Ca∗∂µDab

µ C
b + iψ

p
γµDpq

µ ψ
q (3.29)

where:

Ga
µν = ∂µW

a
ν − ∂νW

a
µ + gf abcW b

µW
c
µ

Dab
µ = δab∂µ − gf abcW c

µ

Dpq
µ = δpq∂µ − ig (T a)pq W a

µ (3.30)

where f abc are the totally antisymmetric structure constants of the semi-
simple gauge group G, T a are the group generators that acts on the fermionic
representation r and where we have introduced the standard landau gauge
fixing and ghost terms. We have explicitly written the two covariant deriva-
tives that act on different representations of the gauge group G.

Following the dimensional reduced notation we can perform the following
decomposition, in order to see the consequences of the DRED procedure:

W a
µ

(
xj
)

=
{
W a

i

(
xj
)
,W a

σ

(
xj
)}

(3.31)

where:
δi
i = δj

j = d δσσ = ε

and it can be shown that we can separate the lagrangian as follows:

LB = Ld
B + Lε

B

with:

Ld
B = −1

4
G2

ij −
1

2

(
∂iWi

)2
+ Ca∗∂iDab

i C
b + iψ

α
γiDαβ

i ψβ (3.32)

Lε
B =

1

2

(
Dab

i W
b
σ

)2 − gψγσR
aψW a

σ − 1

4
g2fabcfadeW b

σW
c
σ′W d

σW
e
σ′ (3.33)

In the conventional dimensional regularization DREG we keep only the
equation (3.32), while in the DRED procedure we keep both the equa-
tions (3.32) and (3.33), that together are able to satisfy the supersymmetric
Ward identities, at least at 1-loop level. The lagrangian (3.33) is precisely
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what is required to restore the supersymmetric Ward identities at 1-loop in
supersymmetric theories. If we consider only the previous non supersym-
metric case we see that the DRED method gives rise to some ambiguity
with gauge transformations. In fact, it can be seen that each term in (3.33),
satisfies the dimensional reduced form of the gauge transformations:

δW a
i = ∂iΛ

a + gf abcW b
i Λc

δW a
σ = gf abcW b

σΛc

δψp = ig (T a)pq ψqΛa (3.34)

where the Wσ have the same transformation properties of the scalar fields,
and so they are called ε-scalars. The gauge invariance alone is not able,
because of the existence of the set of transformations (3.34), to guarantee
that, for example, the vertex ψψWσ has the same renormalization properties
of the vertex ψψWi.

However in the case of supersymmetric theories, that interests to us,
these difficulties do not arise: if ψ is in the adjoint representation, then LB is
supersymmetric. In this case, there is a relation between Wσ and Wi, that is
not broken by the dimensional reduction. Thus the vertices ψψWσ and ψψWi,
that are both equal to g at tree level, remain equal under renormalization.

In complete analogy with the non supersymmetric case, analyzed in sec-
tion 3.4, all the running couplings of a supersymmetric theory must be renor-
malized using DRED with modified minimal subtraction, that we denote as
DR, rather than the usual DREG with modified minimal subtraction, i.e.

MS. However, it is possible to work consistently in the MS scheme, as long
as one is going to use a “dictionary” that permits to translate all the DR
couplings and masses into the MS counterparts [59]. The two schemes differs
only by a small offset:

1

αDR
i

=
1

αMS
i

− Ci

12π
(3.35)

where αi = g2
i /4π and the Ci = C2(G) is the quadratic Casimir operator of

the group G. For example, for a non abelian group like SU(N) we have Ci =
N , while for an abelian one, like U(1) we have Ci ≡ 0, so the electromagnetic
coupling α1 remains the same.

The complete set of renormalization group equations for the MSSM, at
2-loop level, in the DR scheme, are given in [60].

Some of the main properties of the RG equations for a theory like the
MSSM, that is a theory with softly broken supersymmetry, can be studied
even at one loop level.

One of the most important additional feature that comes with super-
symmetry, is, by far, the unification of the coupling constants. This, for
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example, took place in the MSSM. In fact, in the minimal extension of the
SM, there are fermions that live in the adjoint representation of the gauge
group, as well scalars that live in the fundamental representation, as can be
seen by the tables 2.1 and 2.2 of the previous chapter, that together modify
the coefficients (3.27) as:

bMSSM
i =

(
33

5
, 1,−3

)
(3.36)

where we have used the general β-function (3.24), valid for the gauge cou-
plings, with nf = Nfam/2 = 3 and ns = NHiggs = 2.

These new set of coefficients ensure that there is an effective unification
at energy scale of about MU ∼ 1015 GeV . This could be a strong hint for the
existence of supersymmetry, but this is not an exclusive prediction, because
is shared with, for example, the grand unified theories (GUT) based on larger
gauge groups than the SM (like SU(5)).

The complete one loop RG equations for the MSSM couplings, including
the Yukawa, could be written as:

d

dt
gi =

1

(4π)2
bMSSM
i g3

i

d

dt
YU = −YL

(
16

3
g3 + 3g2 +

13

15
g1 − 6YU − YD

)

d

dt
YD = −YD

(
16

3
g3 + 3g2 +

7

15
g1 − YU − 6YD − YL

)

d

dt
YL = −YL

(
3g2 +

9

5
g1 − 3YD − 4YL

)
(3.37)

In the MSSM the supersymmetry is softly broken, so we are led to consider
the RGE for the soft terms, in particular for the gaugino masses. A very nice
feature of the renormalization of the softly broken supersymmetric theories
is that it is completely defined by the unbroken theory [62][63]. This means,
in particular, that the non-renormalization theorems and the cancellation of
quadratic divergences still holds.

From this point of view, it is very convenient to use the supergraph tech-
nique, that can be extended immediately to softly broken theories by using
the so called “spurion” external superfields [50][75][76]. The introduction of
this superfield allows us to rewrite soft breaking terms inside of the super-
fields formalism. The key point, in this approach, is that a softly broken
supersymmetric gauge theory can be considered as a rigid supersymmetric
theory embedded into an external space-time independent superfield, so that
all couplings and masses become external superfields.
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Let us see how this procedure works in the case of a softly broken N = 1
supersymmetric pure Yang-Mills theory with a simple gauge group. The
lagrangian of the rigid theory is given by:

Lrigid =

∫
d2θ Tr (W αWα) +

∫
d2θ̄ T r

(
W̄ α̇W̄α̇

)
(3.38)

with the field strength chiral superfield W α (recalling the equation (2.58))
given by:

Wα = −1

4
D̄D̄e−gVDαe

gV (3.39)

where Vij = T a
ijVa and T a are the group generators. To perform the soft

supersymmetry breaking we can introduce a gaugino mass term. We write
the only term that is allowed by the gauge invariance (see section 2.8 of
chapter 2 for details):

−Lsoft =
ma

2
λλ+

ma

2
λ̄λ̄ (3.40)

where λ is the gaugino field. Now in order to rewrite this terms in the
superfields language we introduce an external spurion superfield:

η = θ2 η̄ = θ̄2 (3.41)

In terms of which the total lagrangian of the theory can be written as:

Ltot = Lrigid + Lsoft (3.42)

=

∫
d2θ (1 − 2µη)Tr (W αWα) +

∫
d2θ̄ (1 − 2µη̄)Tr

(
W̄ α̇W̄α̇

)

=

∫
d2θ

(
1 − 2µθ2

)
Tr (W αWα) +

∫
d2θ̄

(
1 − 2µ̄θ̄2

)
Tr
(
W̄ α̇W̄α̇

)

In terms of field components, the interaction with the superfield η produces
a gaugino mass ma = µ, while the other gauge fields remain massless. In
fact, looking carefully to the soft breaking piece of the lagrangian:

−
∫
d2θ

(
2µθ2

)
Tr (W αWα)

we see that now, due to the presence of the extra θ2, we must select the lowest
component of the product W αWα, that is precisely the component λαλα.

The next step, in order to obtain the complete N = 1 supersymmetric
lagrangian with soft breaking terms, is to add a set of chiral matter superfields
Φi to the pure supersymmetric Yang-Mills theory (3.38):

L =

∫
d2θd2θ̄ Φ̄i

(
eV
)j

i
Φj +

∫
d2θ W +

∫
d2θ̄ W̄ (3.43)
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where the superpotential is of the form:

W =
1

6
λijkΦiΦjΦk +

1

2
M ijΦiΦj (3.44)

while the soft breaking terms are of the type:

Lsoft = −Φi
(
m2
)k

i
ηη̄
(
eV
)i

k
Φj − Aijk ηΦiΦjΦk −

1

2
Bij ηΦiΦj (3.45)

written in terms of the previously introduced spurion superfield η.
Having introduced this formalism, we can perform the renormalization

procedure of a softly broken theory following a simple recipe: one starts
with the renormalization constants of a rigid theory, computed using some
massless scheme such as the DR, substitutes instead of the couplings of the
rigid theory (gauge and Yukawa) their modified expressions, which depend by
the spurion field η, and finally expand over this variable. This procedure gives
the renormalization constants for the soft terms, that, upon differentiating
with respect the renormalization scale, gives at the end the corresponding
renormalization group equations.

In the case of the MSSM, considering the couplings:

αi =
g2

i

(4π)
(3.46)

instead of the gi couplings, we can write down the modified couplings, in-
cluding the Yukawa, as:

α̃ = αi

(
1 +Miη +M iη̄ +

(
MiM i + Σαi

)
ηη̄
)

Ỹk = Yk

(
1 − Akη − Akη̄ +

(
AkAk + Σk

)
ηη̄
)

(3.47)

where Mi are the gaugino masses, Ak are the trilinear scalar couplings, Σk

are a particular combination of soft squark and slepton masses entering in
the expression of the Yukawa vertex and the Σαi

are related to the mass of
the soft supersymmetric ghost terms m̃2

ghost. At one loop order m̃2
ghost = 0

and Σαi
≡ 0.

Performing the procedure previously described, we are able to obtain the
RGE for the soft terms. The following equations are for the gaugino masses,
the trilinear scalar couplings Ak and the sfermion masses m̃2

Q:

d

dt
Mi = (4π) bMSSM

i αiMi = bMSSM
i g2

iMi

d

dt
AU =

16

3
α3M3 + 3α2M2 +

13

15
α1M1 + 6YUAU + YDAD
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d

dt
AD =

16

3
α3M3 + 3α2M2 +

7

15
α1M1 + 6YDAD + YUAU + YLAL,

d

dt
AL = 3α2M2 +

9

5
α1M1 + 3YDAD + 4YLAL,

d

dt
m̃2

Q = −
[
(
16

3
α3M

2
3 + 3α2M

2
2 +

1

15
α1M

2
1 ) − YU(m̃2

Q + m̃2
U +m2

H2
+ A2

U)

−YD(m̃2
Q + m̃2

D +m2
H1

+ A2
D)
]

(3.48)

The complete RGE for all the MSSM soft terms, up to three loop level,
can be found in [64].

3.6 Minimal SUGRA models

We have previously seen (in chapter 2) that the MSSM soft terms can be
put by hand in the full lagrangian of the theory. We have also seen that a
possible explanation for the origin of these terms is through an underlying
more fundamental theory, in which the supersymmetry breaking is realized
spontaneously (in a dynamical way or not). The models described in the
section 2.8 of the previous chapter do not give rise to an acceptable solution.
So supersymmetry breaking cannot be generated by any of the fields that
belong to the supermultiplets of the MSSM [36].

There are several difficulties in realizing the supersymmetry breaking,
at tree level, in a phenomenologically viable way, working only with renor-
malizable terms in the lagrangian. The first problem is to give masses to
the MSSM gauginos, because supersymmetry does not allow scalar-gaugino-
gaugino couplings which could turn into gaugino mass terms when the scalar
gets a VEV. The second problem comes in for the sum rule which governs
the tree level3 squared masses of scalars and chiral fermions in theories with
spontaneous supersymmetry breaking [36]:

Tr
(
M2

real scalars

)
= 2Tr

(
M2

chiral fermions

)
(3.49)

where Mreal scalars and Mchiral fermions are the mass matrices for fields in the
same supermultiplet. Because we already know that the masses of all of the
MSSM chiral fermions are small (except for the t quark and the higgsinos),
it is difficult to explain why we have no observational evidences for light
squarks or sleptons.

3in general the sum rule is not valid if we consider radiative corrections
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For the reasons we have listed, we can expect that the MSSM soft terms
arise indirectly via radiative processes rather than from tree level renormaliz-
able couplings. We can construct models in which supersymmetry breaking
occurs in an “hidden sector” (whose nature is not at all well defined) of parti-
cles which have no (or only very small) direct couplings to the “visible sector”
of chiral supermultiplets of the MSSM. However the two sectors must inter-
act in some way and this interaction must communicate the supersymmetry
breaking. In this scenario, the sum rule (3.49) need not hold for the visible
sector fields, so that we can obtain a supersymmetric viable mass spectrum.
Moreover, if the interactions are flavor blind, then the MSSM soft terms may
automatically satisfy the universality conditions (2.87), (2.88) and (2.89).

We concentrate on models for which the flavor blind interaction are grav-
itational. The situation is sketched in figure 3.5.

Visible Sector

MSSM
gravitational
interactionBreaking

Supersymmetry

Hidden Sector

Figure 3.5: Model with hidden sector that communicate the supersymmetry
breaking, through gravitational interaction, to the visible sector where the
MSSM lives.

The key property of these kind of models is that the hidden sector of the
theory communicates with the MSSM in the visible sector only (or domi-
nantly) through gravitational interactions, and so the underlying theory is
supergravity (SUGRA) [57]. From the point of view of the low energy field
theory, this means that the supergravity lagrangian contains non renormaliz-
able pieces which communicate with the two sectors and which are suppressed
by inverse powers of the Planck mass MP l. In the following description we
want only give a setup of the model and we suggest, for a more in depth
discussion, the references [36][70][71][72].

The non renormalizable lagrangian will include the terms:

LNR = − 1

MP l
FX

∑

a

1

2
faλ

aλa + c.c.
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− 1

M2
P l

FXF
∗
X k

i
jφiφ

∗j

− 1

MP l
FX

(
y′ijkφiφjφk +

1

2
m′ijφiφj

)
(3.50)

where FX is the auxiliary field for a chiral supermultiplet X in the hidden
sector, and φi and λa are the scalar and gaugino fields of the MSSM. The
dimensionless parameters (fa, k

i
j, y

′ijk and m′ij) that appear in LNR are to be
determined by the underlying supergravity theory. The non renormalizable
terms (3.50) are not supersymmetric but it can be shown [36] that they are
part of a supersymmetric lagrangian that contains other terms that can be
safely ignored. Now if we assume that the auxiliary field FX gets, due to
some not specified mechanism, a VEV of order:

〈FX〉 ∼ 1010 GeV

then the non renormalizable lagrangian (3.50) will give exactly the soft break-
ing lagrangian LMSSM

soft , that we have formally written in the equation (2.84)
with:

msoft ∼ 1 TeV

In general computing the parameters fa, k
i
j, y

′ijk and m′ij is a very diffi-
cult task to perform, but a dramatic simplification occurs if one assumes a
minimal form for the normalization of kinetic terms and gauge interactions
in the full, non renormalizable, lagrangian [36]. In this case we find that
fa = f is common to all the gauginos, ki

j = kδi
j is common to all scalars,

while the other couplings are all proportional to the corresponding part in
the superpotential:

y′ijk = c1 y
ijk m′ij = c2m

ij

with universal dimensionless constants c1 and c2. The result is that the soft
breaking lagrangian LMSSM

soft can be written in terms of only four parameters,
that have to be specified at the high energy scale of the SUGRA theory
(typically the unification scale MGUT or even the Planck scale MP l):

m1/2 = f
〈FX〉
MP l

m2
0 = k

|〈FX〉|2
M2

P l

A0 = c1
〈FX〉
MP l

B0 = c2
〈FX〉
MP l

(3.51)
The soft breaking parameters can thus be written in terms of these high scale
input parameters, as follows:

M1 = M2 = M3 = m1/2
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m2
Q = m2

ū = m2
d̄ = m2

L = m2
ē = m2

013×3

m2
Hu

= m2
Hd

= m2
0

ai = A0 yi i = t, b, τ

b = B0µ (3.52)

where we have assumed the third family approximation for the Yukawa cou-
plings. These relations are stronger realization of the universality conditions
and they have to be thought as boundary conditions at the high energy scale,
when we RG evolve the parameters down to the electroweak scale. The en-
tire MSSM spectrum is given in terms of only these five parameters4: m0,
m1/2, A0, B0 and the Higgs mass parameter µ. The framework that we have
described is referred to as the minimal supergravity (mSUGRA) or super-
gravity inspired scenario for the soft terms. In these type of models the
electroweak symmetry breaking (EWSB) is actually driven purely by quan-
tum corrections. This mechanism is therefore known as radiative electroweak
symmetry breaking [73]. Let us see what are the physical Higgs degrees of
freedom after the electroweak symmetry breaking. We already know that in
the MSSM there are two complex Higgs scalar fields and each one is an SU(2)
doublet. Thus, there are eight real degrees of freedom. When the electroweak
symmetry is broken, three of them are the Nambu-Goldstone bosons G0 and
G±, which become the longitudinal modes of the Z0 and W± massive vector
bosons. The remaining five Higgs scalar mass eigenstates consist of one CP
odd neutral scalar A0, two charged scalar H+ and its charged conjugate H−,
together with two CP neutral scalars h0 and H0. It is possible to write down
the conditions that allow a right electroweak symmetry breaking:

|µ|2 +m2
Hd

= b tan β −
(
m2

Z/2
)
cos 2β

|µ|2 +m2
Hu

= b cot β +
(
m2

Z/2
)
cos 2β (3.53)

with the β parameter defined as:

tan β =
vu

vd
(3.54)

where 〈Ho
u〉 = vu and 〈Ho

d〉 = vd are the Higgs bosons VEVs at the minimum
of the potential. Moreover, these quantities can be related to the known mass
of the Z0 boson and the electroweak gauge couplings:

v2
u + v2

d = v2 = 2
m2

Z

g2 + g′2
∼ (174 GeV)2 (3.55)

4The Yukawa couplings are the same already measured in the SM
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The value of tan β is not fixed by present experiments, but it can be computed
starting from the parameters of the MSSM. It is possible to eliminate [38]
two lagrangian parameters, b and |µ|, in favor of tan β and the phase of µ.

Let us concentrate now on the one loop RG equation for the soft gaug-
ino masses that appear in the first line of (3.37). From that equation it is
simple to derive that the three ratios Mi/g

2
i are RG invariant up to two loop

corrections. In fact:

d

dt

(
Mi

g2
i

)
= g−2

i

dMi

dt
− 2Mi g

−3
i

dgi

dt

= 2g−2
i Ci g

2
i − 2Mi g

−3
i Ci g

3
i = 0 (3.56)

where Ci = bMSSM
i / (4π2) and we have used the first lines of the equa-

tions (3.37) and (3.48).
Thus we can see that in mSUGRA models the following relations hold:

Mi(Q) =
g2

i (Q)

g2
i (Q0)

m1/2 i = 1, 2, 3 (3.57)

at any RG energy scale Q < Q0, where Q0 is the high energy input scale which
is presumably of the same order of MP l or of order of the unification scale
MGUT ∼ 1016 GeV. Since in the MSSM we observe the couplings unification,
we put Q0 ≡MGUT and so:

g2
1 (Q0) ∼ g2

2 (Q0) ∼ g2
3 (Q0) (3.58)

Hence, substituting the previous relation into equation (3.57), allows us to
obtain the following RG invariant relation:

M1

g2
1

=
M2

g2
2

=
M3

g2
3

(3.59)

modulo some small two loop effects and possibly larger threshold effects near
the scale MGUT and MP l. The common value of the previous equation can
be put equal to:

m1/2

g2
GUT

where gGUT is the unified gauge coupling at the input scale where m1/2 is the
common gaugino mass. If gaugino masses have, as in this case in which they
satisfy the universality conditions, a common phase and are the dominant
source of supersymmetry breaking, then µ can be taken real without loss of
generality [82]. Moreover, if µ is not real, then there can be very bad CP
violating effects in the low energy physics, including electric dipole moments
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for both the electron and the neutron. Using the EWSB conditions (3.53)
only the sign of µ, the function sgn (µ), remains as a free parameter. Thus to
study the low energy phenomenology we can take as fundamental parameters:

m0, m1/2, A0, tan β, sgn (µ) (3.60)

that encode our ignorance about the mechanism of supersymmetry breaking
and completely define the couplings and the mass spectrum of the MSSM,
once they are RG evolved down to the weak scale.

3.7 Numerical RGE solutions for the MSSM

In section 3.5, we have seen that, not considering the gauge couplings and
gaugino masses, even at one loop level, the RGE for the MSSM form a set of
coupled differential equations. The situation is obviously more complicated
when one consider the two loop equations. In the latter case it is not a simple
task to find a closed form solution for these equations, but it is quite easy to
solve them numerically using an appropriate algorithm.

In the following discussion we describe the ISASUGRA algorithm [65],
that we have extensively used in order to compute the weak scale values of
the MSSM parameters space5. The theoretical framework is the minimal
supergravity (mSUGRA), that is also called constrained MSSM (cMSSM),
without right handed neutrinos, that as been described in the previous sec-
tion.

The input parameters specified at GUT scale are just those previously
defined for a mSUGRA model (see equation (3.60)) and that we rewrite
here:

mo, m1/2, A0, tan(β), sgn(µ) (3.61)

There is a fundamental distinction between free and constrained parame-
ters. The former are identified with the input parameters, while the latter are
constrained either by experiment, for example the quark masses and gauge
couplings, or by relations among themselves such as Yb = Yτ calculated at
MGUT and minimization conditions at mZ .

The are two types of boundary conditions, one at the weak scale and one
at the GUT scale:

• At weak scale mZ one imposes g1, g2, g3 and Yτ , Yb to be equal to their
experimental values.

5see the appendix for a brief description of the fortran code
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• At GUT scale one imposes

M1 = M2 = M3 = m1/2

m2
scalar = m2

0

Aτ = Ab = At = A0

The first part of the algorithm is used in order to determine the right
GUT scale, so it runs from the experimental value mz to the MGUT scale.
Exact unification of all the gauge couplings is a theoretical simplification even
in GUT theories, since one does not expect the gauge couplings to be exactly
equal due to threshold effects at the GUT scale [66]. The threshold correc-
tions are computed using the so called match-and-run technique [69], which
is based on the successive decoupling of particles at the scale of their masses,
following the description outlined in section 3.3. Let us consider a running
mass m̂ in the DR renormalization scheme, whose β-function depends on all
the particles in the MSSM. Defining t by:

t = log

(
Q

MGUT

)
(3.62)

where Q is the energy scale at which the equations are evaluated, the mass
m̂ evolves according to its complete supersymmetric RGE. If we now start
running m̂ towards the weak scalemZ , along the way, we eventually encounter
the scale of the squark masses. According to the match-and-run procedure,
we must stop the evolution and construct a new effective theory in which the
squarks are integrated out. We must then continue the evolution, using the
new β-function, without the squark q̃ contribution, subject to the matching
condition:

m̂
(
m−

q̃

)
= m̂

(
m+

q̃

)
(3.63)

where the superscript + and − refers to the two theories, respectively, with
and without the squark q̃. This procedure must be repeated at each new
threshold finally stopping at the scale:

t = m̂(t) (3.64)

The quantity m̂ (m̂) is the approximation of the physical pole mass.
Let us compute the threshold correction to a particle of mass m̂ from a

particle of mass M , with M > m. According to the match-and-run proce-
dure, the decoupling of the heavy particle gives the correction:

∆m

m̂
=

∆β

16π2
log

(
M̂2

m̂2

)
(3.65)
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Figure 3.6: The running mass m̂ with and without the decoupling of a particle
of running mass M̂ with µ ≡ t = log(Q/MGUT ) [69]

where in this expression, ∆β is the difference of the β-functions, before and
after decoupling (see figure 3.6). The exact one loop result can be found
computing the diagram shown in figure 3.7:

m m

M

M

Figure 3.7: One loop diagram used to compute the threshold correction, due
to an heavy particle of mass M , for a generic particle of mass m

The result is given by:

∆m

m̂
=

∆β

16π2

∫ 1

0

dx log

( |M2 − x(1 − x)m2|
t2

)
(3.66)

that for t = m reduces to:

∆m

m̂
=

∆β

16π2

[
log

(
M2

m2

)
+ (finite terms)

]
(3.67)
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where, as usual, the finite terms does not contain any logarithms. These re-
sults indicate that the match-and-run procedure gives a good approximation
to the pole mass when M̂ � m̂. In this case the large logarithm, propor-

tional to log
(
M̂2/m̂2

)
, dominates the threshold correction. But in the case

m̂ ∼ M̂ , the finite term is typically of the same order of the logarithm and so
the finite corrections are completely missed by the match-and-run procedure.

From mZ to MGUT

The algorithm, RG evolves the 3 gauge couplings g1, g2, g3 and the 3
Yukawa couplings Yτ , Yb, Yt from the measured values at mz scale (Yt starts
from 0). It uses the Runge-Kutta method to integrate the two loop renormal-
ization group equations (except for µ and B that are computed at one loop)
with a common mass scale mSUSY for all the sparticle. This scale is set equal

to mSUSY =
(
m2

0 + 4m2
1/2

)1/2

. The RGE equations implemented are at the

two loop level [60]. The equations at the one loop level are those written
in (3.37). At this stage there is only one threshold correction implemented,
following the procedure outlined in section 3.3:

Q < mSUSY SM RGE

Q > mSUSY MSSM RGE

This means that the contribution of the superparticles to the β function
is different from 0 only above the common scale mSUSY . The running from
mZ to higher energy scales is taken on until it is reached a Q such that the
condition

α1(Q) = α2(Q) (3.68)

is satisfied. This is the condition that defines the gauge coupling unification,
and hence the GUT scale and the αGUT are determined as

MGUT = Q, αGUT = α1(Q) = α2(Q).

The value of the strong coupling constant α3(MGUT ) = α3(Q) does not in
general coincide with αGUT ; so in order to get the unification of the strong
and weak couplings, it is imposed that

αGUT = α1(Q) = α2(Q) = α3(Q). (3.69)

During the running from mZ to MGUT , there is a check on the absolute values
of the Yukawa couplings: if any of these absolute values becomes greater than
10, the RG procedure is terminated, because the perturbation theory breaks
down [67]. If the algorithm is not able to find such Q, then the model is not
a unified one.
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From MGUT to mZ

We start with the following set of parameters defined at the GUT scale:

• the initial inputs defined in (3.61), that imply

M1 = M2 = M3 = m1/2

m2
scalar = m2

0

Aτ = Ab = At = A0

• the 3 gauge couplings g1, g2, g3 and the 3 Yukawa couplings Yτ , Yb, Yt,
that we have evolved in the previous step.

Now it is to time to define the supersymmetric thresholds. In general each
superparticle mass has associated with it a boundary between two effective
theories. Above a particular mass threshold the associated particle is present
in the effective theory, and contributes to the β functions, below the thresh-
old the particle is absent. In the mSUGRA model that we are considering
the superparticle spectrum is no longer degenerate as in a simple global su-
persymmetry model in which all the superparticles are given a common mass
mSUSY . The particular choice in the algorithm is:

meg = meu = medR
= m

eχ±
1

= mA0 = mSUSY

µ = mSUSY

Now we are ready to perform a second RG evolution, from the MGUT scale
to the weak scale mz, for all the parameters. The equations are computed at
the two loop level [60], except for µ and B parameters that are still evaluated
at one loop level. When the weak scale is reached the right constraints for
the electroweak symmetry breaking are imposed [37]. The two conditions are
obtained minimizing the tree level Higgs effective potential. It can be shown
that the b and µ parameters must satisfy the following conditions [60]:

b =

{
m2

Hd
+m2

Hu
+ 2

[
m2

Hd
−m2

Hu
tan2β

tan2β − 1
− 1

2
m2

Z

]}
sin2β

2µ

µ =

[
m2

Hd
−m2

Hu
tan2β

tan2β − 1
− 1

2
m2

Z

]1/2

· sgn(µ) (3.70)

The next step is a refinement of the EWSB conditions, and consists in de-
termining the parameters appearing in the Higgs scalar potential at 1-loop
level. If the quantity :

m2
Hd

−m2
Hu
tan2β

tan2β − 1
− 1

2
m2

Z > 0 (3.71)
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is not satisfied, the electroweak symmetry breaking cannot be obtained, be-
cause the second equation in (3.70) is not well defined, and the procedure is
stopped. If the condition (3.71) is satisfied the algorithm re-evaluate (3.70)
with the mHu

and mHd
parameters evaluated at one loop level. At this stage

are also introduced other one loop corrections to masses and couplings [68],
and the entire particle spectrum is computed.

Iteration of the running from mz to MGUT and back

The next step consists of an iteration of the evolution procedure, running
backward and forward from mz to MGUT .

• The initial conditions, at weak scale, are chosen so that:

- the three coupling constants g1, g2, g3 and two Yukawa couplings Yτ , Yb

are equal to the experimental values.
-the b and µ parameters are those that realize the radiative EWSB at
one loop level, in equation (3.70).
- all the other parameters are those computed in the previous RG run-
ning (in particular the Yt). Yukawa coupling.

During these iterations, the particle spectrum is no more degenerate. This
implies that the theory has many different thresholds, which can be identified
with the particle masses. We now show how the threshold corrections are
implemented in the RG flow. Let us suppose to have a particle with mass
Mη, which contributes βη

i to the β function of the gauge coupling αi, which

we denote as βi, at a given loop order. If β
(0)
i is the β function of the model

for renormalization scale Q < Mη, then the algorithm is built in such a way
that for Q > Mη, the same β function becomes

βi = β
(0)
i + βη

i .

In the algorithm, the following threshold scales are implemented:

1. mũL
for every squark

2. mẽL
for every slepton

3. µ for the the two higgsino doublets

4. mχ±
1

for charginos

5. mg̃ for gluinos

6. mA0 for the two Higgs doublets
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7. M1 for bino

8. M2 for winos

9. mt for third generation top quark

The RG running proceeds from the weak scale mZ to higher values of
the renormalization scale Q. The RG equations used in the process are at

one-loop order, for Q lower than mSUSY =
(
m2

0 + 4m2
1/2

)1/2

, while are at

two loop order for higher Qs, except for those of the parameters µ and b,
that are always at one loop order. As before, the unification scale MGUT is
determined by the condition6

α1(Q) = α2(Q) MGUT = Q,

and the unification of α3 atMGUT is imposed. Once the GUT scale is reached,
the mSUGRA boundary conditions (3.52) are imposed:

M1 = M2 = M3 = m1/2

m2
scalar = m2

0

Aτ = Ab = At = A0,

and the RG running is performed back tomZ , with the same prescriptions de-
scribed above. Once the running reaches the weak scale, if a correct EWSB
symmetry breaking can be achieved7, the entire physical spectrum is cal-
culated. The whole procedure of running from mZ to MGUT and back is
repeated, until the values that the running parameters take at the mZ scale
after each iteration, are stabilized at the level of 2%.

6If the condition cannot be satisfied for any Q < 1016 GeV the algorithm stops.
7See the discussion above.
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Chapter 4

Supersymmetric Dark Matter

4.1 Introduction

We have seen in the previous chapters how to build a suitable supersymmetric
extension of the SM of fundamental interactions and how to connect an
underlying high energy theory, that is able to explain the origin of the soft
supersymmetry breaking terms, with the low energy physics, through the
renormalization group equations. From chapter 1 we already know that we
have to find a cold dark matter candidate in the particle spectrum of such
supersymmetric theories. We will use the framework of the MSSM.

If we want to find a cold dark matter candidate, the key ingredient is
the conservation of the peculiar R-parity that we have defined in the equa-
tion (2.61) in chapter 2. We recall that R = +1 for ordinary particles while
R = −1 for supersymmetric particles (superpartners of the ordinary parti-
cles). If R-parity were broken there would be no special selection rules in
order to prevent the decay of supersymmetric particles into lighter ordinary
particles. This means also that there would be no stable supersymmetric
particle, and so no natural candidate for cold dark matter. Therefore, we
are led to consider only the MSSM with strict R-parity conservation. In this
way the lightest supersymmetric particle (LSP) with R = −1 will be stable.

The LSP must be a superpartner of an ordinary particle. In the MSSM
the possible choices are the gauge fermions (gluino, photino, wino, etc.),
Higgs fermions (higgsinos), scalar quarks and leptons (squarks and sleptons)
and the gravitino. In the early Universe, all these particles would be present
in thermal equilibrium. As the temperature falls, the heavier supersymmetric
particles decay into the lighter one, and so only the LSP will be left. In this
case the dominant process becomes the pair annihilation. We must require
that this process if efficient enough to reduce the present LSP number density
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to an acceptable value from the cosmological point of view.
From the previous list of candidates it is possible to eliminate [77] the

charged uncolored particles, such as a chargino or a slepton, due the failures in
the search of anomalously heavy protons [78]. For the same reason and from
consideration coming from GUT [77], it is possible to eliminate the colored
particles such as squarks and gluinos. Finally the sneutrino is ruled out in
most, but not all, regions of sneutrino parameter space from cosmological
and WIMP direct detection experiments [79] and from indirect searches [80].

So the only remaining candidates, which are not colored and electrically
neutral, are the gravitino, the spin 3/2 particles superpartner of the graviton,
and the lightest neutralino, a linear combination of the gauge boson super-
partners W̃ 0 and B̃ and of the Higgs boson superpartners H̃0

u and H̃0
d . We

will concentrate on the neutralino. We will argue that, because it is stable
and weak interacting, the neutralino is a good dark matter candidate.

4.2 Neutralino

As we have seen before the formal definition of the neutralino is a linear
combination of the higgsinos and electroweak gauginos [37]. The neutral

higgsinos, H̃0
u and H̃0

d , and the neutral gauginos W̃ 0 and B̃ combine to form
four neutral mass eigenstates called neutralinos. We denote the neutralino
mass eigenstates by

χ̃i

with i = 1, 2, 3, 4. By convention the masses are labelled in ascending order:

meχ1
< meχ2

< meχ3
< meχ4

so the lightest neutralino is the LSP (unless there is a lighter gravitino or if
R-parity is not conserved). Introducing a gauge eigenstate basis it is possible
to write the neutralino mass terms in the MSSM lagrangian as:

L ⊃ −1

2

(
ψ0
)T

Meχ ψ
0 + c.c. (4.1)

where:
ψ0 =

(
B̃, W̃ 0, H̃0

d , H̃
0
u

)
(4.2)

and with the neutralino mass matrix given by:

Meχ =




M1 0 −cβsWmZ sβsWmZ

0 M2 cβcWmZ −sβcWmZ

−cβsWmZ cβcWmZ 0 −µ
sβsWmZ −sβcWmZ −µ 0


 (4.3)
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where the θW parameter is the Weinberg angle and where we have introduced
the following notation: sβ = sin β, cβ = cos β, sW = sin θW and cW =
cos θW . We remind that β is related to the Higgs bosons VEVs through the
equation (3.54).

In the neutralino mass matrix (4.3) appear the two soft breaking param-
eters M1 and M2 that, recalling the expression for the soft terms MSSM
lagrangian (2.84), are associated, respectively, to the bino and wino mass
terms. The µ parameter, instead, is the supersymmetric higgsino parameter
that appear in the lagrangian term (2.82).

The neutralino mass matrix (4.3) can be diagonalized by a unitary matrix
N , in order to obtain the neutralino mass eigenstates:

χ̃i = Nijψ
0
j (4.4)

In this way the matrix:

M
(diag)
eχ = N∗MeχN

−1 (4.5)

possesses on the diagonal the eigenvalues, real and positive, meχ1
, meχ2

, meχ3

and meχ4
. These are the absolute values of the eigenvalues of the matrix Meχ,

or equivalently the square roots of the eigenvalues of M †
eχMeχ. The indices

(i, j) on the diagonalizing matrix Nij are mass and gauge eigenstate labels.
The mass eigenvalues and the matrix Nij can be given in closed form in
terms of the parameters M1, M2, µ and tan β, although the results are not
particularly illuminating [81].

In general M1, M2 and µ can have arbitrary complex phase that depends
on the form of the RGE used to evolve down the parameters of the high energy
theory that must describe the origin of the soft supersymmetry breaking
terms. If we assume an mSUGRA model for the origin of these terms, the
relations (3.52) hold. Thus, we are able to redefine the phases of B̃ and W̃ in
such a way that M1 and M2 are real and positive. It is possible to show that
a redefinition of the phase of the fields B̃ and W̃ 0 allows us to make M1 and
M2 real and positive, and, as we have previously seen, the other parameter
is simply sgn (µ), that is still undetermined by the EWSB constraints.

In the mSUGRA models we have the amazing RG invariant relation (3.59).
In particular the following relation holds for M1 and M2, modulo two loop
corrections:

M1 =
g2
1

g2
2

M2 (4.6)

and recalling the conventions for the MSSM coupling constants (see sec-
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tion 3.4):

g1 =
√

5
3
g′ g′ = e/cos θW

g2 = g g = e/sin θW

(4.7)

where e is the usual electroweak coupling, we find the nice property:

M1 =
5

3
tan2 θW M2 (4.8)

that holds at the electroweak scale. This implies that the neutralino masses
and mixing angles depend on only three unknown parameters, that are re-
lated, through the RGE, to the parameters of the underlying high energy
theory. In particular, we can study the neutralino mass dependence from
the m0 and m1/2 mSUGRA parameters, and we find the results shown in
figure 4.1, whose plots are obtained fixing the other three parameters A0,
tan(β) and sgn(µ). We can observe that for m0 < 1 TeV the neutralino mass
heavily depends on m1/2, as one could expect by taking into account that,
for such values of m0, the lightest neutralino is nearly a pure gaugino [84].
In particular it is possible to show [85] that in the limit:

|M1| + |µ| � mZ

the diagonalization of the neutralino mass matrix (4.3) can be carried out
perturbatively and the result is that the LSP is an almost pure bino. Thus
the eigenvalue of the lightest neutralino is, keeping terms up to O (mZ):

meχ1
= M1

while for the second lightest neutralino χ̃2 we have:

meχ2
= M2

The phenomenology and the cosmological relic abundance of the lightest
neutralino are determined essentially by its mass and its composition. Let
us indicate, from now on, the mass of the lightest neutralino with:

meχ ≡ meχ1
(4.9)

and we can express χ̃ in terms of the mixing diagonalizing matrix Nij (re-
calling the equation (4.4)) as:

χ̃ = N11B̃ +N12W̃
0 +N13H̃

0
u +N14H̃

0
d (4.10)
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Figure 4.1: Neutralino mass contour plots in the (m0, m1/2) mSUGRA plane.

The neutralino composition can be described in terms of an other useful
parameter, called gaugino fraction [83], that is defined in the following way:

Zg = |N11|2 + |N12|2 (4.11)

If Zg > 0.5 then the neutralino is primarily a gaugino, while if Zg < 0.5 then
the neutralino is primarily an higgsino.

4.3 Chargino

There is another kind of supersymmetric particle that arise in the mass spec-
trum of the MSSM and that is important in order to study the possible
neutralino interactions. If we consider the two charged higgsinos, H̃+

u and
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H̃−
d , and the two charged winos, W̃+ and W̃−, we see that they generate two

mass eigenstates with charge C = ±1 called charginos. We denote these two
states as:

C̃±
i

where i = 1, 2. As in the neutralino case, the mass are labelled in ascending
order:

m eC1
< m eC2

and the mass eigenstates can be analyzed in an analogous way. Let us fix
the gauge eigenstates basis:

ψ± =
(
W̃+, H̃+

u , W̃
−, H̃−

d

)
(4.12)

in terms of which it is possible to write the chargino mass terms present in
the MSSM lagrangian:

L ⊃ −1

2

(
ψ±
)T

M eC ψ
± (4.13)

where we have introduced the chargino mass matrix M eC that can be written
in a 2 × 2 block form, in the following way:

M eC =

(
0 XT

X 0

)
X =

(
M2

√
2sβmW√

2cβmW µ

)
(4.14)

where mW is the weak gauge boson mass. To find the corresponding mass
eigenstates, we must introduce a 2 × 2 matrices U and V , that act on the
gauge basis in the following way:

(
C̃+

1

C̃+
2

)
= V

(
W̃+

H̃+
u

) (
C̃−

1

C̃−
2

)
= U

(
W̃−

H̃−
d

)
(4.15)

We see that there are two different mixing matrices for the positively charged
states and for the negative ones. The mixing matrices satisfy:

U∗XV −1 =

(
m eC1

0
0 m eC2

)
(4.16)

and because these are 2×2 matrices, it is not hard to find an analytic solution:

m eC1
=

1

2

[(
|M2|2 + |µ|2 + 2m2

W

)
− ∆ eC

]

m eC2
=

1

2

[(
|M2|2 + |µ|2 + 2m2

W

)
+ ∆ eC

]
(4.17)
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where we have introduced:

∆ eC =
[(
|M2|2 + |µ|2 + 2m2

W

)2 − 4
∣∣µM2 −m2

W sin 2β
∣∣2
]1/2

(4.18)

It is interesting to note that the chargino mass eigenvalues of equation (4.17)
are the doubly degenerate eigenvalues of the 4× 4 matrix M †

eC
M eC or equiva-

lently the eigenvalues of X†X, but they are not the squares of the eigenvalues
of X. It is possible to show that in the same limit that we have seen in the
neutralino discussion:

|M1| + |µ| � mZ

the lightest chargino mass is, up to terms O (mZ):

m eC1
= M2

and so it is nearly degenerate in mass with the second lightest neutralino χ2.

4.4 Neutralino annihilations

We have derived in the section 1.4 of chapter 1 the cosmological abundance of
a generic WIMP, without any particular assumption about the nature of this
particle. The result, that we have obtained, is that the WIMP cosmological
density is essentially determined, through the Boltzmann equation (1.37),
by the thermal average of the annihilation cross section times the relative
velocity of the WIMP pair, that is denoted as:

〈σann v〉

Moreover the calculation of the annihilation cross section is required in order
to compute the expected flux of cosmic rays (in particular gamma rays) as
we will see in the next chapter. There are some recent results [89] for a
complete calculation of the annihilation cross section, but here we want to
describe another approach, based on the expansion in helicity amplitudes,
that allows us to obtain a more physical insight.

It is generally possible to expand the annihilation cross section into the
non relativistic limit, because the relative velocity of the neutralino pair,
being a CDM candidate (see chapter 1), is v/c ∼ 10−3 in the galactic halo.
So, to the order O (v2) we have:

σann v = a+ b v2 (4.19)

where the constants a and b are to be computed in the helicity amplitude
formalism.
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The annihilation process can be formally described as1:

χχ→ XY (4.20)

There are various final states XY into which the neutralino can annihilate.
The most important are those states that appear at tree level. Specifically,
they are fermion-antifermion pairs (f f̄ where f is a SM neutrino, lepton
or quark) or state that involves gauge bosons and/or Higgs bosons, such as
W+W−, Z0Z0, W+H−, W−H+, Z0A0, Z0H0, H+H−, and all six combi-
nations of the Higgs bosons A0, h0 and H0. We have performed a detailed
numerical simulation, over the entire MSSM parameter space, of the branch-
ing ratio of different annihilation channels, defined as usual:

(BR)i =
Ai∑
iAi

(4.21)

where Ai is the annihilation probability in the channel i. The result is that
approximately 44% of the models annihilate in a quark-antiquark channel (we
will see below which states are favored) and 36% of the models annihilate in
a gauge boson final state.

In the expansion of the cross section in powers of v we have used the
partial wave formalism, with the a and b associated to different partial waves
contributions: a is the s-wave contribution at zero relative velocity, while b
contains contribution coming from both the s and p-wave. In this formalism
the helicity amplitude for the process (4.20), with h, h̄, λX and λY as the
helicities of the corresponding particles, is written as:

T =

∞∑

L=0

1∑

S=0

L+S∑

J=|L−S|

A
(
2S+1LJ

)
P
(
2S+1LJ

)
dJ

λi,λj
(4.22)

where the reduced partial wave amplitude A describes annihilation from an
initial state with definite spin S and orbital angular momentum L, and thus
also with definite C and P quantum numbers. The spin projector P depend
only on h and h̄ (the helicities of the χχ pair) while the angular dependence
is contained in the functions dJ

λi,λj
where:

λi = h− h̄

λf = λX − λY (4.23)

are the differences of the helicities of the initial and final particles, respec-
tively. Because our initial state involves two neutralinos, that are identical

1from now on we will neglect the tilde over χ
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Majorana fermions, we only need to consider initial states with C = 1. More-
over, since we want to expand the total annihilation only up to O (v2), we
find again that only annihilations from s and p-wave have to be included. At
the end, we thus find that we need to include only the contributions from
1S0,

3P0,
3P1 and 3P2 initial states. Explicit expressions for the relevant spin

projector can be found in [86].
In the following discussion we will derive the non relativistic limit v →

0 for the annihilation cross section. In this limit only the a term of the
expansion (4.19) is important. Thus we have to compute this term for the
dominant annihilation channels.

Let us consider weak gauge bosons in the final state. The weak gauge
boson annihilation channels are opened if they are kinematically allowed:

mχ > mW

There is no s-wave suppression mechanism for these annihilations, and thus
they can become very important for a neutralino heavy enough to make the
final state available. These channels are usually important when Zg . 0.1
and so when the neutralino is primarily an higgsino.

Z 0

h
0

H
0

Cn
+

+W

+W

+W

−W
−W

−W

χ

χ

χ

χ

χ

χ

,

Figure 4.2: Diagrams that contribute to the amplitude of the neutralino
annihilation into W+W− gauge bosons

The Feynman diagrams that contribute to the annihilation into W+W−

gauge bosons are shown in the figure 4.2. The limit v → 0 for the annihilation
amplitude to a pair of W bosons is completely determined by a chargino
exchange in the t and u-channel and is given by:

A
(
χχ→ W+W−

)
v→0

= 2
√

2 βW g2

2∑

n=1

[(
OL

0n

)2
+
(
OR

0n

)2] 1

Pn
(4.24)
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where the kinematic factor βW is given by:

βW =

√
1 − m2

W

m2
χ

(4.25)

and:

Pn = 1 +

(
mC±

n

mχ

)2

−
(
mW

mχ

)2

(4.26)

and the sum is extended over the two chargino states which can couple to
the neutralino and the W boson. The functions OL

0n and OR
0n [31][85] can be

expressed as:

OL
nm = − 1√

2
N4nV

∗
2m +N2nV

∗
1m

OR
nm =

1√
2
N∗

3nU
∗
2m +N∗

2nU
∗
1m (4.27)

where N is the neutralino diagonalizing matrix defined in the equation (4.4)
and U and V are the chargino diagonalizing matrices defined in the equa-
tion (4.15). The indices are consistent with the basis, ψ0 and ψ±, definition.

nχ h
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H
0

0Ζ
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0Ζ
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χ

χ

χ
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,

Figure 4.3: Diagrams that contribute to the amplitude of the neutralino
annihilation into Z0Z0 gauge bosons

The Feynman diagrams that contribute to the neutralino annihilation
into Z0Z0 gauge bosons are shown in figure 4.3. The v → 0 amplitude for
the neutralino annihilation into a Z boson pair is completely determined by
the t and u-channel exchange of a neutralino χn, and is given by:

A
(
χχ→ Z0Z0

)
v→0

= 4
√

2βZ
g2

cos2 θW

4∑

n=1

(
O′′L

0n

)2 1

Pn
(4.28)

where now:

Pn = 1 +

(
mχn

mχ

)2

−
(
mZ

mχ

)2

(4.29)
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and the kinematic factor is now given by:

βZ =

√
1 − m2

Z

m2
χ

(4.30)

The sum is now extended over the four neutralino states χn. In terms of
the amplitude that we have computed, we can obtain the annihilation cross
sections (times the relative velocity v) in the non relativistic limit as:

σ (χχ→ V V )v→0 =
1

SV

βW

128πm2
χ

|A (χχ→ V V )|2 (4.31)

where V = W±, Z0 and the coefficient SV is a symmetry factor SW = 14 and
SZ = 2, that take into account the fact that the Z boson final state contains
two identical particles.

The annihilation channel of the neutralino into a fermion-antifermion pair
is usually dominant because, given a neutralino mass mχ & 50 GeV, this is an
always open channel. However for the interesting range of neutralino masses,
in particular from the cosmological point of view, i.e. mχ ' 100GeV , the
fermionic final states are not the only open channels. In this case the contri-
bution of the gauge boson final states, that is no more closed or suppressed,
becomes important.

When we study the non relativistic limit, we must consider that there
are some helicity constraints for the fermionic final state [87]. In fact we
know that the neutralino is a Majorana particle and so it coincides with its
own antiparticle. This implies that two neutralinos that are in a relative
s-wave, must have their spins oppositely directed, as a consequence of the
Fermi-Dirac statistics. So also the final state, constituted by the fermion-
antifermion pair, must have a total spin equal to zero, and so with opposite
directed spins. The amplitude must have a factor of the fermion mass mf

in order to take into account the helicity flip. This result can be seen also
by an other point of view: the initial state has CP = −1 and so the final
state must have also CP = −1, because we are considering CP conserving
interactions. The net resulting suppression factor for the s-wave amplitude
is of order:

m2
f

m2
χ

This suppression factor is important for the light fermionic final states. But,
of course, there is no suppression factor for the t quark final state, unless
the neutralino is much heavier than the t quark. For b and c quarks final
states, the suppression factor is of the order of 10−4 for a neutralino with
mass mχ ' 100 GeV.
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Figure 4.4: Diagrams that contribute to the amplitude of the neutralino
annihilation into a f̄ f pair

The Feynman diagrams for the neutralino annihilation into a f̄f pair are
shown in figure 4.4. Let us compute the annihilation cross section for the
fermion-antifermion production in the non relativistic limit. The s-wave am-
plitude has contributions coming from u and t-channel exchange of a sfermion
state f̃ , from an s-channel Z0 boson and from an s-channel A0 Higgs bo-
son [77][88][85]. The amplitude can be written as:

A
(
χχ→ f̄ifi

)
v→0

= Af̃ + AZ0 + AA0 (4.32)

Let us evaluate the different contributions. The sfermion f̃ exchange is given
by:

Af̃ =
√

2

6∑

j=1

1

Pj

{[(
X ′

f ij0

)2
+
(
W ′

f ij0

)2] mfi

mχ
+ 2X ′

f ij0W
′
f ij0

}
(4.33)

where the sum is extended over the six sfermion states and the i and j are
family indices. The functions X ′

f ijn and W ′
f ijn are the couplings that appear

in the lagrangian terms that describe the interaction vertices of sfermions
(included the sleptons ν̃i), fermions and neutralinos:

Lff̃χ =
∑

f=u,d,e

f̄i

(
PRX

′
f ijn + PLW

′
f ijn

)
χ0

nf̃j

+ν̄i PRX
′
ν ijnχ

0
nν̃j + h.c. (4.34)

where PL and PR are the usual chiral projection operators:

PL =
1

2
(1 − γ5)

PR =
1

2
(1 + γ5)
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The couplings can be expressed as:

X ′
f ijn = Xf n (ΠLΘf)ij + Zf ikn (ΠRΘf )kj

W ′
f ijn = Yf n (ΠRΘf)ij + Zf ikn (ΠLΘf)kj (4.35)

where we have introduced the sfermion mixing matrix Θf . These matrices
can be defined in the diagonalization procedure for the sfermion mass matrix:

(
Mdiag

f̃

)2

= Θ†
fM

2
f̃
Θf (4.36)

where we have introduced the sfermion projection operators ΠL and ΠR,
which have the effect of projecting mass eigenstate sfermion fields onto sub-
spaces corresponding to a particular handedness:

ũL i = (ΠL)ik Θu
kjũj

ũR i = (ΠR)ik Θu
kjũj (4.37)

Analogous relations hold for the down type squarks and the charged sleptons.
The other functions that appear in the definition of the couplings (4.35) are
given by:

Xf n = −g
√

2 [T3fN
∗
2n − tan θW (T3f − ef)N

∗
1n]

Yf n = g
√

2 tan θW efN
∗
1n

Zu ijn = − g√
2mW sin β

(Mũ)ij N
∗
4n

Zd ijn = − g√
2mW cos β

(Md̃)ij N
∗
3n

Ze ijn = − g√
2mW cos β

(Mẽ)ij N
∗
3n (4.38)

where the neutralino mixing matrixNij is referred to the basis ψ0 =
(
B̃, W̃ 0, H̃0

d , H̃
0
u

)
,

and where T3f is the T3 quantum number of the fermion f and ef is the charge
of f in units of e [37].

The Z0 exchange contribution to the total amplitude is given by:

AZ0 = 2
√

2
g2

cos2 θW

O′′
00

L
T3fi

mfi
mχ

m2
Z

(4.39)

where the coupling O′′
00

L is derived by the general formula:

O′′
nm

L
= −O′′

nm
R∗

=
1

2
(−N3nN

∗
3m +N4nN

∗
4m) (4.40)
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We can immediately see that the Z-boson exchange amplitude (4.39) is pro-
portional to the mass mfi of the final fermion state. Adding the amplitude
A0 that is proportional to the mass mfi

through the corresponding Yukawa
coupling [31], we are able to obtain the total annihilation cross section in a
fermion-antifermion pair in the non relativistic limit:

σ
(
χχ→ f̄f

)
v→0

v =
cfβf

128πm2
χ

∣∣A
(
χχ→ f̄ f

)∣∣2 (4.41)

where cf is a color factor (cf = 3 when the fermion in the final state is a
quark), and the kinetic factor βf is equal to:

βf =

√
1 −

m2
f

m2
χ

In the limit v → 0, the annihilation cross section in a fermion-antifermion pair
is proportional to the mass mf . Thus, the annihilation into lighter quarks
and leptons is negligible respect to the annihilation into the heavy quarks
c, b and t and into the heavier lepton τ . Moreover, when the neutralino mass
is mχ > mt then the dominant annihilation channel is t̄t.
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Chapter 5

Indirect neutralino detection

with cosmic γ-rays

5.1 Introduction

We have identified the neutralino as one of the best motivated WIMP cold
dark matter candidate. We have seen that in the neutralino annihilation
processes, ordinary SM particles are produced. Thus the study of neutralino
properties is possible through indirect detection of these particles. In fact, if
a dark halo, such as the Milky Way halo, is made of WIMPs, there is a small
but finite probability for dark matter particles to annihilate in pairs into
lighter SM particles (the annihilation strength is the quantity which fixes the
WIMP relic abundance), giving rise to cosmic rays, as, for example, exotic
γ-rays and antimatter fluxes. In particular, the distortion of the spectrum
of the diffuse γ-ray flux in the Galaxy due to a WIMP induced component,
extending up to an energy equal to the WIMP mass, is a possible signature
to identify dark matter. In the following analysis we will focus on such a
signal.

We might ask how it is possible to have a γ-ray flux coming from neu-
tralino annihilations. We have seen in the previous chapter the possible tree
level final state for neutralino annihilations. There are no final states that
contains γ’s. This can be regarded as a consequence of the dark matter
definition, i.e. matter the does not emit light. But, once SM particles are
produced from annihilations, they can decay and/or interact to produce, at
the end, a measurable γ-ray flux.

Our starting point will be the already available experimental data coming
from EGRET γ-ray detector. We will concentrate ourselves on the data com-
ing from our Galactic Center. In order to study the expected γ-rays flux and
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to try a fit of the experimental data, we will built a simplified phenomeno-
logical toy model that describes the WIMP annihilations. This allows us to
obtain some general results without worrying about the details of a more
complex underlying theory. Then we will argue how the upcoming experi-
ments, as the GLAST detector, will be able to constrain the parameter space
of our WIMP theoretical models. In particular we specialize to mSUGRA
models (introduced in section 3.6). Then we will see how this kind of anal-
ysis can tell us something about the detection possibilities of the upcoming
GLAST experiment.

5.2 The EGRET data

The EGRET telescope on board of the Compton Gamma-Ray Observatory
has mapped the γ-ray sky up to an energy of about 20 GeV. Moreover,
EGRET has observed the Galactic center (GC) region, over a total period of
5 years. The collected data show high statistical evidence for a gamma-ray
source, diffuse rather than point-like, located within 1.5◦ of the GC (l =
b = 0◦) [90]. The detected flux largely exceeds the diffuse γ-ray component
expected in the GC direction with a standard modeling of the interaction of
primary cosmic rays with the interstellar medium (see, e.g., [91]); the latter
fails also to reproduce the spectral shape of the GC source. Assuming the
GC excess is indeed due to some form of diffuse gamma-ray emission, one
might regard this issue as a particular aspect of a general problem concerning
the diffuse Galactic γ-ray emission as measured by EGRET [95].

The generic feature emerging at all latitudes is that the measured diffuse
flux shows a spectrum which is much harder than expected. As can be seen in
figure 5.1, taken from [91], below 1 GeV the spectrum observed by EGRET
can be modeled with fair accuracy as due to primary cosmic-ray protons
and electrons propagating in the Galaxy, with spectra and normalizations
as measured locally. On the other hand, under the same assumptions, one
severely underestimates the flux above 1 GeV: the standard emission model
predicts the flux in this energy range to be dominated by photons from the
decay of π0’s, but this component is sensibly softer than the measured flux,
if the proton cosmic ray flux in the Galaxy is assumed to have the same
spectral index as measured locally. Several solutions to this problem have
been proposed: one option is, for example, to assume that the local cosmic
ray electron spectrum is not representative for the entire Galaxy and it is on
average harder than that measured locally. Another possibility is that there
is some variability in the spectral indices of standard cosmic ray sources (for
a discussion see, e.g., [96]).
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  0.5<l< 30.0 , 330.0<l<359.0

 -5.0<b<  5.0

Figure 5.1: γ-ray energy spectrum of the inner galaxy (300◦ ≥ l ≤ 30◦)
compared with what is expected for standard propagation models [95].

The other interesting solution, is that the excess can be explained by the
diffuse γ-ray flux expected from a WIMP induced component [92]. In fact,
we will see that this component has just the right spectral feature to generate
the kind of distortion in the diffuse γ-ray flux.

In Table 5.1 we report the flux per energy bin for the GC γ-ray source
as measured by EGRET, together with the expected flux from cosmic ray
interactions in a standard scenario [90].

5.3 The diffuse γ-ray background

To start with our analysis we must give a model that describes the produc-
tion of γ-rays in the Galaxy. This is called the background diffuse com-
ponent. There are three mechanisms which give rise to this diffuse γ-ray
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Energy Bin Expected Diffuse γ−Ray Flux Total γ−Ray Flux
(GeV)

(
cm−2s−1GeV−1sr−1

) (
cm−2s−1GeV−1sr−1

)

0.03 − 0.05 3.7 · 10−3 (5.0 ± 0.8) · 10−2

0.05 − 0.07 1.8 · 10−3 (1.3 ± 0.2) · 10−2

0.07 − 0.1 1.1 · 10−3 (6.1 ± 0.5) · 10−3

0.1 − 0.15 6.2 · 10−4 (4.4 ± 0.2) · 10−3

0.15 − 0.3 2.6 · 10−4 (2.03 ± 0.06) · 10−3

0.3 − 0.5 1.0 · 10−4 (9.5 ± 0.2) · 10−4

0.5 − 1 3.5 · 10−5 (3.9 ± 0.1) · 10−4

1 − 2 9.1 · 10−6 (1.52 ± 0.03) · 10−4

2 − 4 2.0 · 10−6 (3.2 ± 0.1) · 10−5

4 − 10 2.3 · 10−7 (3.1 ± 0.2) · 10−6

Table 5.1: Estimated values for the Galactic diffuse γ−ray component com-
ponent (second column) and EGRET data from a region of 1.5◦ around the
GC (third column), extracted from [90].

radiation: production and decay of π0s, inverse Compton scattering and
bremsstrahlung (see for example [91]). According to standard scenarios, in
the energy range Eγ > 1 GeV we will mainly focus on, the dominant back-
ground source is through π0 decays. The production of pions (and then of
photons) is mainly due to primary cosmic-ray protons, with a small correc-
tions from the primary helium component, through the interactions:

p+X → ..→ π0 → 2γ

He+X → ..→ π0 → 2γ ,

where X is an interstellar atom, i.e. H and He.
The simulation of the induced γ−ray yield has been performed according

to standard treatments implemented in the Galprop software package [91].
We assume that the p and He cosmic ray fluxes in the Galaxy have the
same energy spectra and relative normalization as those measured in the
local neighborhood, and that the He component in the interstellar medium
is 24% in mass with respect to H. Then we write the background flux,
splitting it into two factors:

Sb(Eγ) =
1

(1 cm2sr)
· E(Eγ) (5.1)

and

Nb =
1

(1 cm−2sr−1)
·
∫

l.o.s.

dl
nH(l)

4π

φprim
p (l)

φprim
p (l = 0)

. (5.2)
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Here E(Eγ) [GeV−1 s−1] is the local emissivity per hydrogen atom, i.e. the
number of secondary photons with energy in the range (Eγ, Eγ+dEγ) emitted
per unit time by one target hydrogen atom, for an incident flux of protons
and helium nuclei equal to the locally measured primary proton and helium
fluxes. The factorNb is instead associated to the interstellar hydrogen column
density nH(l), integrated along the line of sight and weighted over the proton
primary flux at the location l, φprim

p (l), normalized to the local value φprim
p (l =

0).
Above an energy of about 1 GeV the background spectrum (and therefore

the function φb) recovers the same spectral index as the dominant primary
component, i.e. the proton spectral index α = 2.7. The relative normal-
ization of the primary components in different places in the Galaxy can be
estimated once a radial distribution of primary sources is chosen (following,
for instance, the radial distribution of supernova) and then by propagating
the injected fluxes with an appropriate transport equation (this is what is
done in the Galprop code [91]). On the other hand, the hydrogen column
density toward the Galactic center is very uncertain; we chose therefore to
define the spectral shape of the background through the function Sb and to
keep Nb as a free normalization parameter.

5.4 γ-ray flux from WIMP annihilations

In order to explain the EGRET excess in the GC data, we assume that the
bulk of the high energy γ-ray flux is due to WIMP annihilations. Let us
introduce a generic framework in which the dark matter in the Galactic dark
halo consists of non relativistic WIMPs of massmχ and total pair annihilation
rate into lighter Standard Model particles σannv (in the non relativistic limit
of vanishing relative velocity). The total γ-ray flux coming from the GC can
be described as the superposition of two contributions:

• the background contribution due to interaction of primary cosmic rays
with the interstellar medium, with spectral shape defined by the func-
tion (5.1)

• the signal contribution due to WIMP annihilations in the dark matter
halo, whose energy spectrum is defined by Sχ(Eγ)

Hence we can write the flux as:

φγ = φb + φχ = NbSb +NχSχ, (5.3)
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where Nb and Nχ are dimensionless normalization parameters. The Nb pa-
rameter is the normalization of the standard background contribution (5.2)
while Nχ is the unknown normalization of the WIMP annihilation flux.

As we have seen in section 4.4, for a neutralino, among the kinematically
allowed tree level final states, the leading channels are often:

bb̄, cc̄, tt̄, τ+τ−, W+W−, Z0Z0

More generically this result holds for any Majorana fermion WIMP, as for
such particles the s-wave annihilation rate into the light fermion species is
suppressed by the factor m2

f/m
2
χ, where mf is mass of the fermion in the

final state.
Once the SM particles are produced, there are two processes that give

rise to γ’s in the final state: the fragmentation and the decay process. The
dominant intermediate step in these processes is the π0 production. In this
way we are able to compute the photon yield in the framework of the SM.
The yield simulation has been performed with the Lund Monte Carlo program
Pythia [118] implemented in the DarkSUSY1 package [94].

In order to compute the γ-ray flux we must determine the dark matter
distribution in the halo. Suppose that the dark matter halo is roughly spher-
ical and consider the induced γ-ray flux in the direction that forms an angle
ψ with the direction of the Galactic center. In this case the WIMP induced
photon flux is the sum of the contributions along the line of sight (l.o.s):

φχ(E, ψ) =
σannv

4π

∑

f

dNf

dE
Bf

∫

l.o.s

dl(ψ)
1

2

ρ(l)2

m2
χ

(5.4)

where Bf is the branching ratio into the tree-level annihilation final state f ,
while dNf/dE is the relative differential photon yield. The WIMP mass den-
sity along the line of sight ρ(l) enters critically in the prediction for the flux,
as the number of WIMP pairs scales with ρ(l)2. It is then useful to factorize
the flux in equation (5.4) into two pieces, one depending only by the under-
lying particle physics theory, i.e. on the cross section, the branching ratios
and the WIMP mass, and the other depending on the WIMP distribution in
the galactic halo. We rewrite equation (5.4) as:

φχ(E, ψ) = 3.74 ·10−10
( σannv

10−26 cm3s−1

)(50 GeV

mχ

)2∑

f

dNf

dE
Bf ·J(ψ) (5.5)

1see the appendix for a brief description of the fortran code
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in units cm−2s−1GeV−1sr−1 and where we have defined the dimensionless
function J , containing the dependence on the halo density profile, as

J(ψ) =
1

8.5 kpc

(
1

0.3 GeVcm−3

)∫
ρ2(l)dl(ψ) (5.6)

More precisely, given a detector with angular acceptance ∆Ω, we have to
consider the average of J(ψ) over the solid angle ∆Ω around the direction ψ:

〈J(ψ)〉∆Ω =
1

∆Ω

∫
J(ψ)dΩ (5.7)

To compare with the GC gamma-ray source, we will consider ∆Ω ∼ 10−3 sr,
i.e. the same magnitude as the angular region probed by the EGRET exper-
iment.

In an analogous way as for the background component, we have then
splitted the signal into a term which fixes the spectral shape of the flux, plus
a normalization factor. In the notation introduced in Equation (5.3), we have
denoted Nχ ≡ 〈J(ψ)〉∆Ω and defined Sχ ≡ φχ/Nχ. The WIMP density ρ(l)
is very poorly constrained towards the GC. Hence we will treat Nχ as a free
parameter. Although there is a large span in the predictions for φχ when
coming to specific WIMP models, the term Sχ shows some generic trends.
As most γ’s are produced in the hadronization and decay of π0s, the shape
of the photon spectrum is always peaked, for kinematic reasons, at

mπ0/2 ∼ 70 MeV

where mπ0
is the pion mass, The spectral shape is symmetric around it on a

logarithmic scale. This feature is often called the “π0 bump”.
The same is true for the background, but still it may be possible to

discriminate signal from background: the signal arises in processes which
have all the same energy scale, i.e. 2mχ, therefore the WIMP induced flux,
contrary to the background, is spectral index free and shows a sharp cutoff
when Eγ approaches the WIMP mass. This is shown in the right panel of
Fig. 5.2, where we plot the differential photon yield per annihilation times
the inverse of WIMP mass squared, for a few values of the WIMP mass,
and assuming WIMPs have a single dominant decay channel (bb̄ in the case
displayed). In the same figure, for comparison, the spectral shape of the
background is shown: as it can be clearly seen, one may hope to identify the
WIMP induced component as a distortion of the background spectrum at
relatively high energies.

For a given WIMP mass, the photon yields in the different annihilation
channels are analogous, as shown in the left panel of Fig. 5.2: solid curves
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Figure 5.2: In the left panel: differential yield per annihilation for a few
sample annihilation channels and a fixed WIMP mass (200 GeV ). The solid
lines are the total yields, while the dashed lines are components not due
to π0 decays. For comparison the emissivity, with normalization arbitrarily
rescaled, from the interaction of primaries with the interstellar medium is
shown. In the right panel: differential yields per annihilations for a fixed
annihilation channel (bb̄) and for a few sample values of WIMP mass, rescaled
with the inverse of the WIMP mass squared.

indicate the total photon yield, while dashed curves indicate the photon yield
in radiative processes, i.e. in all processes rather than π0 decays. The spec-
trum for the tt̄ and W+W− channels are very close to one for bb̄ (differences
are mainly given by prompt decays before hadronization); only in the τ+τ−

case, that we will not taken into account in this analysis, radiative photon
emission is dominant, still with a large bump due to the hadronic decay
modes of τ leptons.

5.5 Fit of EGRET data

We have seen that data in the EGRET measurement extend up to 10 GeV
only, with few bins in the high energy region. Then, it is not likely that one
can pin down many details on an eventual WIMP induced component. In
particular, it is not possible to discriminate among the WIMP model by sep-
arating the photon components from single tree-level annihilation channels.
It is convenient to keep the discussion as general as possible and consider a
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simplified scenario (which we refer, from now on, to as a toy model [93]), in
which only one intermediate annihilation channel is open (Bf = 1 in that
channel), and we set the value of the total annihilation cross section according
to the following general argument.

To start with, let us suppose that WIMPs in the halo are thermal relic
particles: in the simplest scenario (i.e. when no resonances or thresholds
appear near the kinematically released energy in the annihilation 2), we can
fix the WIMP total annihilation rate through the approximate relation (see
discussion in section 1.4 of chapter 1):

σannv ∼ 〈σannv〉 ∼
3 · 10−27cm3s−1

Ωχh2
∼ 3 · 10−26cm3s−1 , (5.8)

where 〈σv〉 is the thermally averaged annihilation cross section and Ωχ the
WIMP thermal relic abundance. We keep as the only free parameter the
WIMP mass, as we have shown that the photon spectrum is rather sensitive
to it.

The results shown below just depend on a mass scale and on a normaliza-
tion parameter; they can be easily rescaled for any explicit model for which
mχ and σannv are defined. Note, in particular, that the scaling we have
implemented between annihilation rate today, 〈σv〉 and Ωχ is only a rough
approximation and that large deviations from it can appear, mainly due to
resonances and thresholds, or, sometimes, coannihilation effects.

In section 5.7 below we will consider an explicit WIMP model, in the
framework of mSUGRA models, and we will not use this approximate rela-
tion, but instead calculate the relic density including properly both coanni-
hilations, resonances and thresholds.

For each WIMP mass mχ and for each intermediate channel, we try to
reproduce the EGRET data (third column of Table 5.1), with a flux of the
form in equation (5.3) and varying the parameters Nb and Nχ. As in the
fit we do not want to include cases in which the flux is underestimated, we
implement the additional constraint on the normalization constants:

(NbSb +NχSχ)i ≥ (φEGRET )i , (5.9)

where the index i runs over the energy bins for which we have experimental
data; φEGRET is the diffuse γ-ray flux measured by EGRET in each bin,
i.e. the third column in table 5.1 We do not use the first two energy bins
in table 5.1, because they are in a region (E � 1 GeV) in which the back-
ground should be dominated by the inverse Compton and bremsstrahlung
components instead of π0 production as we are assuming.
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Figure 5.3: Reduced χ2 for EGRET data fit vs mχ for the two annihilation
channels bb̄ and W+W−

We find as allowed range of variation for the background normalization,
Nb between 3.2·1020 to 1.8·1021, corresponding, respectively, to the case when
the background is at the level estimated in a standard scenario (column 2
in Table 5.1) and to the best fit case with Nχ = 0. In figure 5.3 we have
plotted the value of the reduced χ2 of such fits in two cases: one in which
there is only the background contribution (Nχ = 0), and the other in which
we allow a WIMP contribution to the flux (Nχ > 0). The number of degrees
of freedom, for the reduced χ2, is 6, i.e. the number of EGRET experimental
points above 100 MeV (which is 8) minus the number of free parameters, Nb

and Nχ. Even in the case of small WIMP masses, which seems to be the
favored ones, we have obtained that the reduced χ2 values are of the order
of 5.

In figure 5.4 we show two fits of the EGRET data, obtained for the
intermediate channels bb̄ and W+W−, for values of the WIMP mass close to
the respective production thresholds. This two plots are shown just to give
a qualitative idea of the ’goodness’ of the fits of EGRET data, in relation to
the reduced χ2 value. As it can be seen from the figure, the fit to the data
greatly improves when a neutralino component is added.

Next we have studied the reduced χ2 in fitting EGRET data with our
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Figure 5.4: Fits of EGRET data for two different models with χ2
r ∼ 5, with

the corresponding values for Nb and Nχ.

signal plus background theoretical curve, in function of the parameters mχ

and Nχ, for the intermediate annihilation channel bb̄. Figure 5.5 contains
lines of constant values of such reduced χ2 in the (Nχ, mχ) plane. We find
again the same result that we have inferred from figure 5.3, namely that the
EGRET data are best fitted for low neutralino masses.

5.6 WIMP signal detection with GLAST

The Gamma-ray Large Area Space Telescope (GLAST) (see [107] for an
exhaustive description of the experiment and of the scientific organizations
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Figure 5.5: Lines of constant reduced χ2 for the fit of Galactic center EGRET
data with φγ = Nbφb +Nχφχ, in the (Nχ, mχ) plane.

involved) is a new generation satellite with greatly improved features with re-
spect to EGRET. Besides studying dark matter, the main scientific objectives
are the study of all γ-ray sources such as blazars, γ-ray bursts, supernova
remnants, pulsars, diffuse radiation, and unidentified high-energy sources. It
is worth noting that the experimental techniques for the detection of γ-rays
in the energy range in which there is pair production are very different from
the techniques used for X-ray detection. In fact, in the detection of X-rays
it is possible to optically focus the incoming beam: this allows for a large
effective area, excellent energy resolution, very low background. For γ-rays
no such focusing is possible and this means limited effective area, moder-
ate energy resolution and an high background. With respect to EGRET,
GLAST allows for a better space resolution. This could be revealed as a
very important feature in order to study WIMP annihilations.

In the following analysis we will use in a crucial way GLAST technical
features. The most important features, form the point of view of WIMP
detection, shown in figure 5.6, are:

• an energy range between 20 MeV and 300 GeV
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Figure 5.6: Expected GLAST performances

• a field of view of ∼ 3 sr

• an energy resolution of ∼ 5% at 1 GeV

• a point source sensitivity of 2x10−9 (ph cm−2 s−1) at 0.1 GeV

• an event deadtime of 20 µs

• a peak effective area of 104 cm2

A more detailed description of the apparatus can be found in [108] and
of its main physics items in [109].

In the context of a simplified toy model, in section 5.5 we have explored
the possibility of fitting the EGRET data from the GC with a neutralino
induced continuum γ−ray component. This exercise was performed for a
given intermediate WIMP annihilation channel. The satisfactory outcome
of this trial urges a more detailed analysis. We thus examine the possibility
to detect the continuum γ signal from χχ annihilations in the GC, with the
upcoming experiment GLAST. For each intermediate channel and WIMP
mass, we look for the minimum ratio between the two normalization factors
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Profile 〈J(0)〉∆Ω ∆Ω = 10−5 sr
Modified isothermal 3.03 · 101

Navarro, Frenk, White 1.26 · 104

Moore et al. 9.46 · 107

Table 5.2: Halo profiles.

Nχ/Nb, that is needed in order to detect with GLAST the WIMP annihilation
signal among the background one. As we have seen in section 5.5, the factor
Nχ is exactly J(ψ), while Nb is related to the density of the interstellar
medium. The best fits in section 5.5 give a typical value of Nb of the order of
1020 ÷ 1021. Given also a typical halo profile (see table 5.2) we expect Nχ/Nb

to be of the order of

Nχ

Nb
∼ 10 ÷ 107

1020 ÷ 1021
⇒ 10−20 <

Nχ

Nb
< 10−13 (5.10)

In figure 5.8 we plot, for one intermediate channel (the other channels look
very similar) and for each WIMP mass, the minimum ratio of Nχ/Nb to
be able to discriminate the WIMP signal with GLAST at a 3σ confidence
level. For such an analysis, we have considered a region around the GC of an
angular extension of the order of the GLAST angular resolution at 10 GeV ,
that, as can be seen from figure 5.6, is ∼ 10−5 sr. We have made this choice
in order to exploit the GLAST capability to sharply focus on the GC, that is
very advantageous to consider in an indirect dark matter search, since around
it the dark matter density could very likely be strongly enhanced. We will
return on this point below.

The discrimination criterion we have used is based on the usual χ2 test
statistic. Our choice can be easily understood referring to figure 5.7, that
shows an example of a supersymmetric continuum γ ray flux, together with
the background only component and the sum of the two. The points repre-
sent the expected flux measurements of the GLAST detector, with the asso-
ciated statistical error for the chosen energy binning. We have computed the
reduced χ2 between the number of counts expected in each energy bin for
the two hypothesis: supersymmetric signal plus background and background
only. Taking into account the number of degrees of freedom, which in our
case is equal to the number of energy bins, the signal plus background curve
is distinguishable from the background only curve, for a reduced χ2 > cost..
This constant in uniquely determined by the number of degrees of freedom
and by the confidence level we want to reach. We have also checked our
results against those obtained with the likelihood ratio method [110, 111],
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Figure 5.7: The figure shows an example of a supersymmetric continuum γ
ray flux, together with the background only component and the sum of the
two. The points represents the expected GLAST flux measurements with
the associated statistical error for the chosen energy binning.

obtaining no discrepancies2. This latter method is especially suited for the
case we have at hand: deciding if a certain event belongs to the background
only hypothesis (H0) or to signal plus background hypothesis (H1), one starts
by constructing two probability distributions, P0 and P1, for an estimator
F = L(H1)/L(H0), which is the ratio between the likelihoods L of the two
hypotheses. In our case, since we are interested in counting, we can choose
the Poisson distribution to obtain the likelihood. Comparing the two dis-
tributions one can decide, at a certain confidence level, if they will result
distinguishable or not, once it is fixed the accuracy of the experimental data
that will be used for the discrimination. The likelihood ratio method is
in general more powerful than the χ2 one, since, in addition to giving the
probability of a certain set of data to belong to the signal plus background
probability distribution, it allows to compute the probability to be wrong
when accepting such hypothesis, the so called power of the test, considering
the background only hypothesis as the true one.

2I thank G.Ganis for the computer code that allows to perform this analysis.
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From figure 5.8 we can see that, given an annihilation channel, the min-
imum value of Nχ/Nb to distinguish the WIMP signal raise as a quadratic
power law with the WIMP mass mχ. Such a behavior could be expected
because in equation (5.5) for the flux φχ, there is a suppression factor m−2

χ

(it is useful to see also figure 5.8). Let us further observe, again from figure
5.8, that the minimum values of Nχ/Nb needed to discriminate a signal with
GLAST, ranges inside the interval of equation (5.10) that has been computed
from the values of Nχ = 〈J(0)〉 of table 5.2 and from the typical values of Nb

needed to best fit the GC EGRET data.

5.7 mSUGRA Neutralino detection with GLAST

All the results that we have obtained in previous sections hold for a generic
WIMP in the framework of our toy model. At the end we want to identify
this WIMP with a neutralino. We know that in the MSSM there is a huge
number of independent parameters, so to perform phenomenological analysis
we must reduce this number. Let us consider the mSUGRA theories (de-
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Ann. Channel (σv)min (σv)max

[cm3s−1] [cm3s−1]
bb̄ 10−36 10−20

cc̄ 10−40 10−26

tt̄ 10−33 10−25

W+W− 10−35 10−28

Z0Z0 10−35 10−29

Table 5.3: mSUGRA cross sections for the relevant annihilation channels.

scribed in section 3.6) as the underlying high energy theory. The theory is
then completely defined in terms of five input parameters, that we rewrite
here for convenience:

m0, m1/2, A0, tan β, sgn (µ)

These parameters are defined at the GUT scale. In this way the MSSM can be
regarded as an effective low energy theory and so the weak scale parameters
can be obtained, from the high energy theory, solving the appropriate RG
equations described in section 3.5 and 3.6. The numerical procedure that
we have followed is described in section 3.7. Moreover we have performed a
phenomenological study of the neutralino, obtaining the neutralino isomass
curve of figure 4.1 in section 4.2.

Let us concentrate on the annihilation cross sections of a neutralino pair.
In our toy model we have assumed that the neutralino annihilation cross
section was essentially fixed, for a given annihilation channel, by the inverse
of the relic density. Now, in the context of mSUGRA models, we can relax
this assumption. We have computed in table 5.7, the range of variation,
among the entire mSUGRA parameter space, of the cross sections of the 5
processes:

χχ→
{
bb̄, cc̄, tt̄,W+W−, Z0Z0

}
.

Calling σtot the total annihilation cross section, the partial ones and the
corresponding branching ratios are defined by the following equations:

σtot =
∑

i

σi, Γi =
σi

σtot
, (5.11)

where the index i runs over every annihilation channel. We remind that the
neutralino pair could decay through a lot of other intermediate states but
the five considered above are just the dominant ones (see section 4.4).
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After this phenomenological study of the properties of a mSUGRA neu-
tralino, we have tried to determine the region of the mSUGRA parameter
space that, for a given dark matter halo normalization factor, could give a
detectable continuum γ−ray neutralino induced flux, using GLAST. Fixing
tanβ, A0 and sgn(µ), we have performed an accurate scan in the (m0, m1/2)
plane, searching for the minimum 〈J(ψ)〉∆Ω needed to be able to distinguish
the neutralino annihilation signal with GLAST, using the same discrimina-
tion criteria described in section 5.6. In figure 5.9 we show the iso-contour
regions for the minimum allowed value of 〈J(ψ)〉∆Ω for the signal detection,
in the (m0, m 1

2

) plane, where we have taken into account the latest bounds

coming from the current accelerator limits [114]. Among these we have con-
sidered lower bounds for the chargino, the gluino and squarks masses besides
the bounds for b → sγ process. We have also implemented a lower bound
for the neutralino mass:

mχ & 50 GeV (5.12)

For this analysis, we have used for ∆Ω the GLAST angular resolution,
for the same reason explained in section 5.6, where we have also seen that it
is ∼ 10−5 sr. We can observe that the regions where the neutralino signal
can be detected by GLAST cover almost the entire allowed portion of the
(m0, m 1

2

) plane, for values of the halo normalization factor 〈J(ψ)〉∆Ω, that
are of the same order of magnitude of the “typical” ones, reported in table
5.2.

As an aside, we compare our results with those of [115], which assume a
certain rough estimation for the GLAST sensitivity for the integrated con-
tinuum γ−ray flux from a region around the GC, of an extension equal to
the GLAST angular resolution, and consider the neutralino signal detectable
if its integrated flux is not lower than such sensitivity. Their figures 18 and
19 for the visible regions in the (m0, m 1

2

) plane for a value of 〈J(ψ)〉∆Ω equal
to 500 are in qualitative agreement with our corresponding predictions: first
and fourth panels of figure 5.9.

In addition to this study of the GLAST sensitivity, we have tried to
single out the regions of the mSUGRA parameter space ((m0, m 1

2

) for fixed

tan(β), A0 and sign(µ)), which are already experimentally excluded, due to
a supersymmetric component of the γ-ray flux exceeding the GC EGRET
data of table 5.1. The excluded regions, at 5σ level, are shown using 〈J(0)〉
contour plots in figure 5.10. This result implies that no significant constraints
on the mSUGRA parameter space can actually be imposed, on the basis of
the GC γ−ray data taken by EGRET. In figures 5.9 and 5.10, we have shaded
the regions of the (m0, m 1

2

) plane, for which the neutralino relic abundance
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Figure 5.9: Contour plots in the mSUGRA (m0, m1/2) plane, for the value of
the normalization factor Nχ, that allows the detection of the neutralino γ ray
signal, with GLAST. The light shaded region corresponds to 0.1 ≤ Ωχh

2 ≤ 1,
while the dark shaded one corresponds to models that are excluded either
by incorrect EWSB, LEP bounds violations or because the neutralino is not
the LSP.

lies inside the cosmologically preferred interval [99]:

0.1 ≤ Ωχh
2 ≤ 1

We can observe that this last request strongly constraints the acceptable
portion of the mSUGRA parameter space. As a consequence, fixing a value
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Figure 5.10: Contour plots in the mSUGRA (m0, m1/2) plane, for values of
Nχ that are already excluded by EGRET data at 5σ confidence level. The
light shaded region corresponds to 0.1 ≤ Ωχh

2 ≤ 1, while the dark shaded
one corresponds to models that are excluded either by incorrect EWSB, LEP
bounds violations or because the neutralino is not the LSP.

for 〈J(ψ)〉∆Ω, gives extremely small regions of parameter space in which the
neutralino signal is detectable using GLAST.
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5.8 GC Angular Extension as seen by GLAST

Given that a γ-ray signal coming from WIMP annihilations could be detected
by the experiment GLAST, we want to study if the apparatus is able to
resolve its spatial position. This is an interesting problem related to the
hypothesis that the GC be a point-like or an extended source.

In order to discriminate between the two assumptions we assume a simple
dark matter halo profile whose overall normalization has been obtained by
constraining the flux φγ to fit the GC EGRET data. Then we estimate the
minimum value of the normalization of the WIMP flux, (Nχ)min, needed to
detect the signal with GLAST.

Next, with the normalized dark matter halo profile, we compute the angle
ψmax beyond which the value of 〈J (ψ)〉∆Ω becomes lower than (Nχ)min, and
consequently the neutralino signal gets undetectable by GLAST. Finally we
compare the value of ψmax with the GLAST angular resolution ω (see fig
5.6). If ψmax > ω we say that GLAST sees the GC as an extended source of
γ-rays generated by neutralino annihilations.

Let us now explain in detail each step of the above strategy. The esti-
mated angular resolution at E = 10 GeV of the GLAST telescope is ap-
proximately 10−5 sr (corresponding to ω ∼ 0.1◦ as in fig 5.6). Focusing on
a region of such angular extent around the GC, we can find a typical value

of the normalization of the neutralino flux, (Nχ)fit, averaging among those
values that give the best fit of the EGRET data. From figure 5.3 we see that
for a given annihilation channel the EGRET data are best fitted by models
that have a WIMP mass near the energy threshold of the channel.

We hence find (Nχ)fit = 1.2 · 105 averaging over all the dominant WIMP
annihilations channels: bb̄, cc̄, tt̄,W+W−, Z0Z0 and for all the WIMP masses
between threshold and twice threshold. For these same annihilation channels
and masses, we can also easily compute the average value of the normalization
needed to detect the WIMP signal with GLAST (see the discussion in section
5.6). Let us call this other average (Nχ)min = 4.5 ·103. The dark matter halo
profile that we have considered is a simple isothermal profile:

ρ(r) =





ρ0

(
r
r0

)−γ

, r > rmin

ρ0

(
rmin

r0

)−γ

, r ≤ rmin

(5.13)

with ρ0 = 0.3 GeV/cm3 the local halo density, r0 = 8.5 Kpc the distance of
the sun from the GC. To avoid the singularity in r = 0 we have introduced
a lower cut-off rmin = 10−5 Kpc, corresponding to a distance from the GC
below which one cannot trust a smooth dark matter halo distribution [116].
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We can now identify 〈J(0)〉∆Ω (see equation 5.7 with ∆Ω of order ∼
10−5 sr) with (Nχ)fit. From equation (5.13) we infer the value of the param-
eter γ compatible with the above identification: γ = 1.54.
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Figure 5.11: 〈J(ψ)〉∆Ω with ∆Ω = 10−5 sr computed using the halo profile
in equation 5.13

We now compute the function 〈J(ψ)〉∆Ω for every angle ψ, according to
its definition equation (5.7), obtaining the shape shown in figure 5.11. The
function 〈J(ψ)〉∆Ω decreases with increasing ψ, and hence we can find a value
(ψmax) such that 〈J(ψ)〉∆Ω is lower than (Nχ)min for every ψ > ψmax. ψmax

could then be interpreted as the angular extension of the GC as seen by the
GLAST telescope; in fact the WIMP signal will be detectable only if the
GLAST telescope is focused in a region within a ψmax angular distance from
the GC. Comparing ψmax ' 1.5◦ with the estimated angular resolution of
the GLAST detector (ω ' 0.1◦ at E = 10 GeV as in figure 5.6) we can argue
that the GC can be considered as an extended source if observed with the
GLAST telescope. We have to stress that this result must be considered only
as a qualitative indication, because it has been obtained averaging over the
WIMP annihilation channels and masses. Moreover it depends in a crucial
way by the dark matter halo profiles choice. A more detailed analysis must
keep into account the details of both the supersymmetric model and of the
neutralino dark matter halo.
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5.9 Optimal ∆Ω for WIMP Signal Detection

We have shown in the previous section that the GC can be considered as
an extended source, from the GLAST detection point of view. Now we
want to try to determine the optimal value of the angular acceptance ∆Ω in
equation (5.7) to maximize the chance to detect the γ-ray signal from WIMP
annihilations with GLAST. For various values of ∆Ω we have computed the
average minimum WIMP normalization factor needed to discriminate the
WIMP signal from the background. As in the previous section, the average
has been calculated over the five annihilation channels and for every WIMP
mass between the threshold and twice the threshold.

For each value of ∆Ω we have compared (Nχ)min with the value of the
function 〈J(0)〉∆Ω obtained using the halo profile of equation (5.13) with
γ = 1.54. Given ∆Ω, the WIMP signal is detectable if the following condition
is satisfied:

〈J(0)〉∆Ω > (Nχ)min

In figure 5.12 we show the plot of the ratio of these two quantities, with
respect to ∆Ω, starting from a value of ∆Ω equal to the angular resolution
of the GLAST detector. It can be seen that for lower values of ∆Ω one
has higher ratios between 〈J(0)〉∆Ω and (Nχ)min and hence a more favorable
situation for the WIMP signal detection. Our conclusion is that the optimal
∆Ω to use in a search for continuum γ-ray signals from WIMP annihilations
with the GLAST detector is its minimum value i.e. the GLAST angular
resolution.

We stress that such result depends on the particular choice of the halo
profile function (see equation (5.13)): it is valid only if the actual halo density
profile could be approximated by the power law of equation (5.13) within an
angular extent around the GC of at least ω ∼ 0.1◦ which is the value of the
GLAST angular resolution.

5.10 Results

The result of our analysis on the EGRET data from the Galactic Center
(GC) suggests there is room for a supersymmetric dark matter component
that is suitable to explain the excess with respect to standard continuum
γ-ray production expectation.

A general feature, independent on the particular nature of the WIMP,
that has emerged, is that the best fit of the EGRET data is obtained for
small WIMP masses without the need to assume highly singular dark matter
halo profiles.

114



∆Ω(sr)

<J
(0

)>
 / 

(N
χ)

m
in

Figure 5.12: Ratio between 〈J(0)〉∆Ω and (Nχ)min vs ∆Ω.

We have also found that a convincing signal, in a statistical sense, of the
continuum γ-ray flux from WIMP annihilation in the GC will be possible
with the upcoming experiment GLAST, without the need to assume highly
singular dark matter halo profiles. This result has also been obtained in the
particular case in which the WIMP is the lightest neutralino of the minimal
supergravity model. In such case, we have also argued that the EGRET data
already impose some weak constraints on the particle physics model, and we
have determined, for certain halo profile choices, some regions of the minimal
supergravity parameter space that could already be ruled out.

Another result that we have obtained is that, from the point of view of
the GLAST detector, the GC region is an extended source for γ-rays coming
from WIMP annihilation. Furthermore, we have found that the optimal
angular extension of the region around the GC center to consider, in order to
maximize the chance to detect the WIMP signal with GLAST, is the lowest
possible, i.e. the GLAST angular resolution.
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Chapter 6

Conclusions

In this work we have performed a detailed analysis of the possibilities to dis-
cover supersymmetric dark matter through continuum γ-ray flux from the
GC. In particular, we have presented what can be already learned from satel-
lite experiments like EGRET and what we can expect from GLAST upcoming
experiment. This task has been achieved using a toy model to obtain results
for a generic WIMP without worrying about the particle physics model. Then
we have specialized to a particular underlying theory, mSUGRA, that gives
rise to supersymmetry breaking terms in the MSSM. We have shown, in chap-
ter 2, what are the important ingredients in building such supersymmetric
extension of the SM and in chapter 3 we have seen how to obtain low energy
predictions, through RGE, starting from a high energy theory. There are
interesting issues in the numerical procedure to solve RGE. They must be
carefully taken into account in order to compare our analysis of the expected
γ-ray flux with other similar studies (for example [84]).

The problem of the excess of EGRET data coming from the GC has been
analyzed with explicit calculation of the expected neutralino component in-
duced flux. We have left the two normalization, associated to the continuum
background and to the WIMP components, as free parameters, because of
the high uncertainty in their determination. The result is that there is indeed
room for a WIMP induced component. We expect for the WIMP mass:

mχ . 100 GeV

in reasons of the best fit of EGRET data. The analysis can be improved
when further data in the region E > 10 GeV will be available with GLAST.
Moreover we have to wait for a more precise determination of the interstellar
hydrogen column density associated to the Nb parameter, and of the actual
dark matter density profile, which is very poorly known towards the GC.
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We have shown that, in order to obtain a statistical evidence for a WIMP
induced components in the continuum γ-ray flux, we have to assume 〈J (Ψ)〉
of the order of 104. This is a higher value than the prediction of a more naive
analysis. The statistical evidence relies on our discrimination method, based
on the equivalent procedure, i.e. χ2 statistics and likelihood ratio. Thus our
method put more constraints on the discover of a WIMP induced component.

One important result is that an improved WIMP signal detection will
indeed be possible with the GLAST experiment, that has a better angular
resolution with respect to EGRET.

This work can be extended in several ways. One of these, from the pure
phenomenological side, is to implement a more precise description of GLAST
features coming from improved simulations of the apparatus. Another possi-
bility is to consider constraints on the parameter space of the theory coming
from other cosmic rays measurements, like that of cosmic antiproton flux. In
fact, we have seen that these are allowed final states for neutralino annihila-
tions. It also possible to study the one loop annihilation processes with γ’s
in the final state. These would be a very convincing signal for the existence
of supersymmetric dark matter.

To complete the analysis is then possible to consider other mechanism
of supersymmetry breaking, that give rise to different underlying theory for
the MSSM. One example is given by the so called anomaly mediated models
that implies a different phenomenology for the neutralino.
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Appendix A

Spinorial notation

In defining supersymmetric theories it is very useful to work with two compo-
nents Weyl spinors. In this appendix we will define the opportune formalism.

Let us start by defining the usual Minkowski space-time metric tensor in
D = 4 dimensions:

ηmn = diag (−1,+1,+1,+1) (A.1)

where we use the latin indices m,n, . . . to denote the space-time coordinates,
to better distinguish them from the spinorial indices. Then we introduce
the Van der Waerden notation to work with the Weyl spinors. The Lorentz
group in D = 4 is:

SO(1, 3) ∼ SL (2,C) (A.2)

Let us consider a 2 × 2 matrix with unit determinant M ∈ SL (2,C). This
matrix allows us to build representations of the Lorentz group that acts over
two components Weyl spinors, and we obtain the following transformation
properties:

ψ′
α = M β

α ψβ ψ̄′
α̇ = (M∗) β̇

α̇ ψ̄β̇

ψ′α = (M−1)
α

β ψβ ψ̄′α̇ =
[
(M∗)−1] α̇

β̇
ψ̄β̇

(A.3)

where we have used the dotted-undotted notation to distinguish between
different representations of SL (2,C). The greek indices α, β = 1, 2 are used
to denote the spinorial indices. In particular the undotted indices α, β, . . .
transform as the right handed representation (1/2, 0) while the dotted indices
α̇, β̇, . . . transform as the left handed representation (0, 1/2) of the Lorentz
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group. We can assume the Pauli matrices as a basis for SL (2,C):

σ0 =

(
−1 0
0 −1

)
σ1 =

(
0 1
1 0

)

σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

) (A.4)

so that an arbitrary SL (2,C) matrix can be written in terms of this basis
as:

P = Pmσ
m = P0σ

0 + P1σ
1 + P2σ

2 + P3σ
3

=

(
−P0 + P3 P1 − iP2

P1 − iP2 −P0 + P3

)
(A.5)

Every hermitian matrix P = P † can thus be written in terms of real Pm.
This property can be seen, recalling the hermiticity of the Pauli matrices:

(
σi
)†

= σi i = 0, 1, 2, 3

so that:

P = P † =

(
∑

i

Piσ
i

)†

=
∑

i

P ∗
i σ

i (A.6)

obtaining at the end the reality condition:
∑

i

Piσ
i =

∑

i

P ∗
i σ

i ⇒ P ∗
i = Pi ⇒ Pi ∈ R (A.7)

From every hermitian matrix P , it is possible to obtain another hermitian
matrix by applying the following transformation:

P ′ = MPM † (A.8)

where both P and P ′ admit an expansion in terms of the σm basis:

P ′ = P ′
mσ

m = MPmσ
mM † (A.9)

Since M is unimodular,i.e. detM = 1, we can show that the coefficients Pm

and P ′
m are connected by a Lorentz transformation:

det (P ′
mσ

m) = det (Pmσ
m) = P ′2

0 − ~P ′ · ~P ′ = P 2
0 − ~P · ~P (A.10)
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The Pauli matrices have the following index structure:

σm
αα̇ (A.11)

that allows us to write some Lorentz scalar quantities:

ψαψα ψ̄α̇ψ̄
α̇ ψασm

αα̇∂mψ̄
α̇

It is possible to define the SL (2,C) metric tensor εαβ, that is a totally anti-
symmetric tensor defined with the following conventions:

ε21 = ε21 = 1

ε12 = ε21 = −1

ε11 = ε22 = ε11 = ε22 = 0 (A.12)

It is obviously invariant under Lorentz transformations:

εαβ = M γ
α M δ

β εγδ

εαβ = εγδM α
γ Mβ

δ (A.13)

Using the metric tensor εαβ we can raise and lower spinorial indices:

ψα = εαβψβ

ψα = εαβψ
β (A.14)

where it is important to note that we have defined εαβ and εαβ in such a
way to satisfy:

εαβε
βγ = δγ

α (A.15)

Analogous relations hold for the undotted indices.
The εαβ can also be used to raise and lower indices of the Pauli matrices:

σ̄mαα̇ = εαβεα̇β̇σm
αα̇ (A.16)

that can be explicitly written in matrix form, as:

σ0 = σ̄0 =

(
−1 0
0 −1

)
σ1 = −σ̄1 =

(
0 1
1 0

)

σ2 = −σ̄2

(
0 −i
i 0

)
σ3 = −σ̄3 =

(
1 0
0 −1

) (A.17)

Moreover the following relations hold:

(σmσ̄n + σnσ̄m) β
α = −2ηmnδ β

α

(σ̄mσn + σ̄nσm)α̇
β̇ = −2ηmnδα̇

β̇
(A.18)
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with the following completeness relations:

Tr (σmσ̄n) = −2ηmn

σm
αα̇σ̄

β̇β
m = −2δ β

α δα̇
β̇

(A.19)

where the trace is over the spinorial indices. These relations can be used to
relate a spinor product representations to a vector representation:

(
1

2
, 0

)
⊗
(

0,
1

2

)
=

(
1

2
,
1

2

)

and so we can use the σ matrices to write:

vαα̇ = σm
αα̇vm

vm = −1

2
σ̄mαα̇vαα̇ (A.20)

It is also possible to give the Lorentz generators in the spinorial representa-
tion:

σnm β
α =

1

4

(
σn

αα̇σ̄
mα̇β − σm

αα̇σ̄
nα̇β
)

σ̄nmα̇
β̇

=
1

4

(
σ̄nα̇ασm

αβ̇
− σ̄mα̇ασn

αβ̇

)
(A.21)

It is possible to relate two component Weyl spinors to the usual four com-
ponent Dirac spinor, using the relations (A.18). Thus in the Weyl basis the
4 × 4 Dirac matrices are written as:

γm =

(
0 σm

σ̄m 0

)
γ5 =

(
1 0
0 1

)
(A.22)

where the matrices are in 2 × 2 blocks form. In this basis a Dirac spinor
contains two Weyl spinors:

ψD =

(
χα

ψ̄α̇

)
(A.23)

while a Majorana spinor contains only one Weyl spinor (the other component
is simply the complex conjugate):

ψM =

(
χα

χ̄α̇

)
(A.24)
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To finish we write down the conventions for the sum of spinorial indices, with
the so called “upper left” notation. We can derive the following relations for
a product of two spinors:

ψχ = ψαχα = −ψαχ
α = χαψα = χψ

ψ̄χ̄ = ψ̄α̇χ̄
α̇ = −ψ̄α̇χ̄α̇ = χ̄α̇ψ̄

α̇ = χ̄ψ̄ (A.25)

where we have used the anticommuting property of the spinors. The defini-
tion of the product ψ̄χ̄ is chosen in a such a way that:

(χψ)† = (χαψα)† = ψ̄α̇χ̄
α̇ = ψ̄χ̄ = χ̄ψ̄ (A.26)

where we can see that the conjugation change the order of the spinors.
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Appendix B

Description of the algorithms

In this appendix we give a description of the algorithms used to compute the
renormalization group equations of the MSSM parameters, the gamma ray
flux coming from neutralino annihilations and its relic abundance.

B.1 ISASUGRA

The ISASUGRA algorithm is able to compute, using the renormalization
group equations (at two loop level), the weak scale parameters of the minimal
supersymmetric extension of the Standard Model from those at the GUT
scale. ISASUGRA is written in standard FORTRAN77 and it is a part of
the ISAJET package. This is a Monte Carlo event generator which simulates
pp, p̄p and e+e− interactions at high energies. The latest source, contained
in the file isajet.car, is available at ftp://ftp.phy.bnl.gov/pub/isajet. From
now on we will refer to the version 7.631.

The main program is SUGRUN and starts from line 34555 of the file
isajet.car (this is a raw text file). This program requires as input the high
scale parameters of the underlying fundamental theory. In general this theory
is minimal supergravity but also other supersymmetry breaking scenario can
be considered. In the mSUGRA case (defined in section 3.6) the input real
single precision variables are:

M0,MHF,A0,TANB,SGNMU,MT

They denote respectively the high energy parameters:

m0, m1/2, A0, tan β, sgn (µ)

1available at http://www.fis.uniroma3.it/˜lionetto/
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while MT denote the “pole” top quark mass mt. We set, as usual

mt = 173.8 GeV

that is the LEP value coming from direct observation of top events. The
integer variable IMODEL=IMODIN determines the supersymmetry breaking
scenario. It can assume the following values:

IMODEL Scenario
1 mSUGRA
2 mGMSB
3 non-universal SUGRA
4 SUGRA with truly unified gauge couplings
5 non-minimal GMSB
6 SUGRA+right-handed neutrino
7 anomaly-mediated SUSY breaking

The renormalization group evolution is achieved with a call to the subroutine
SUGRA in line 34699:

15 CALL SUGRA(M0,MHF,A0,TANB,SGNMU,MT,IMODEL)

The routine output is saved in the common block SUGMG at line 790. It
contains the values of all the couplings that have been RG evolved down to
weak scale. The couplings are stored in a real vector variable GSS(29):

C Frozen couplings from RG equations:

C GSS( 1) = g_1 GSS( 2) = g_2 GSS( 3) = g_3

C GSS( 4) = y_tau GSS( 5) = y_b GSS( 6) = y_t

C GSS( 7) = M_1 GSS( 8) = M_2 GSS( 9) = M_3

C GSS(10) = A_tau GSS(11) = A_b GSS(12) = A_t

C GSS(13) = M_h1^2 GSS(14) = M_h2^2 GSS(15) = M_er^2

C GSS(16) = M_el^2 GSS(17) = M_dnr^2 GSS(18) = M_upr^2

C GSS(19) = M_upl^2 GSS(20) = M_taur^2 GSS(21) = M_taul^2

C GSS(22) = M_btr^2 GSS(23) = M_tpr^2 GSS(24) = M_tpl^2

C GSS(25) = mu GSS(26) = B GSS(27) = Y_N

C GSS(28) = M_nr GSS(29) = A_n

where, GSS(1)...GSS(3) are, respectively, the MSSM couplings g1, g2 and
g3 defined in section 3.4, GSS(4)...GSS(6) are the Yukawa couplings and
GSS(7)...GSS(9) are the soft breaking mass parameters M1, M2 and M3

defined in section 2.9.
Another output variable of the SUGRA routine is NOGOOD. Its value

is the result of a consistency check performed by the SUGRA subroutine on
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the supersymmetric model defined by M0, MHF, A0, TANB, SGNMU. The
model is accepted if NOGOOD=0 and it is rejected if NOGOOD assumes
the following values:

NOGOOD Excluded by
1 BAD POINT: TACHYONIC PARTICLES

2 BAD POINT: NO EW SYMMETRY BREAKING

3 BAD POINT: M(H_P)^2<0

4 BAD POINT: YUKAWA>10

5 SUGRA BAD POINT: Z1SS NOT LSP

6 BAD POINT: XT EWSB BAD

7 BAD POINT: MHL\^2<0

The value 1 implies that some tachyonic particle appears in the low energy
spectrum. Hence the model is inconsistent. The values 2,3,6,7 refer to an
incorrect electroweak symmetry breaking as explained in section 3.6. The
value 4 implies that the absolute value of some of the Yukawa couplings has
become greater than 10. Finally, the value 5 implies that the neutralino is
not the lightest supersymmetric particle.

The next step after the consistency check for the supersymmetric model,
is to calculate all masses and decay modes. This is performed by a call to
the subroutine SSMSSM in line 34761. The definitions of the masses are also
contained in the SUGMG common block at line 790. The vector MSS(32)
contains all the MSSM masses:

C Masses:

C MSS( 1) = glss MSS( 2) = upl MSS( 3) = upr

C MSS( 4) = dnl MSS( 5) = dnr MSS( 6) = stl

C MSS( 7) = str MSS( 8) = chl MSS( 9) = chr

C MSS(10) = b1 MSS(11) = b2 MSS(12) = t1

C MSS(13) = t2 MSS(14) = nuel MSS(15) = numl

C MSS(16) = nutl MSS(17) = el- MSS(18) = er-

C MSS(19) = mul- MSS(20) = mur- MSS(21) = tau1

C MSS(22) = tau2 MSS(23) = z1ss MSS(24) = z2ss

C MSS(25) = z3ss MSS(26) = z4ss MSS(27) = w1ss

C MSS(28) = w2ss MSS(29) = hl0 MSS(30) = hh0

C MSS(31) = ha0 MSS(32) = h+

where, MSS(1) is the gluino mass, MSS(2)...MSS(13) are the (left and right)
squark masses, MSS(23)...MSS(26) are the neutralino masses, MSS(27) and
MSS(28) are the chargino masses and MSS(29)...MSS(32) are the higgs masses.
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Then it is possible to do a further check on low energy parameters. If
we want to test if they satisfy the LEP and SLC bounds2 we can call the
subroutine SSTEST in line 34755. This subroutine (whose code starts from
line 44841) gives as output the variable IALLOW. These are the possible
values that it can take:

IALLOW Bounds on SUSY particles
1 Z1 is not LSP

2 Gamma(Z -> Z1SS Z1SS) < GAMINV

4 Z -> charginos allowed

8 BF(Z -> Z1SS Z2SS)>10^5

16 Z -> squarks, sleptons

32 BR(Z -> Z* HL0) < B(Z -> Z* H(M=MHSM))

64 BR(Z -> HL0 HA0) > 0

128 M(H+) > M(Z)/2

We have already seen that the most important subroutine called by the main
program is SUGRA. Its source code starts from line 49442. It uses a Runge-
Kutta algorithm to integrate the renormalization group equations from the
weak energy scale MZ to the GUT scale MGUT and back. The iteration
method is explained in section 3.7. The maximum number of iterations is
determined by the integer variable MXITER. Its value is set in line 49501:

C This choice is a compromise between precision and speed:

DATA MXITER/20/,NSTEP0/1000/,DELLIM/2.E-3/

In the same line there is the NSTEP0 variable that determines the number of
intervals in the energy range from MZ to the GUT scale MGUT . The variable
DELLIM controls the precision of the iterative procedure (see section 3.7).

Here we rewrite the complete inputs for the SUGRA routine:

C Calculate supergravity spectra for ISAJET using as inputs

C M0 = M_0 = common scalar mass at GUT scale

C MHF = M_(1/2) = common gaugino mass at GUT scale

C A0 = A_0 = trilinear soft breaking parameter at GUT scale

C TANB = tan(beta) = ratio of vacuum expectation values v_1/v_2

C SGNMU = sgn(mu) = +-1 = sign of Higgsino mass term

C MT = M_t = mass of t quark

C M0 = Lambda = ratio of vevs <F>/<S>

C MHF = M_Mes = messenger scale

C A0 = n_5 = number of messenger fields

2caveat: the latest version is updated to 5/25/95
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C IMODEL = 1 for SUGRA model

C = 2 for GMSB model

C = 7 for AMSB model

All the inputs has to be thought as the high energy parameters specified at
MGUT . For the first iteration only the first six couplings are included and a
common threshold for all the supersymmetric masses is used.

The first run of the three gauge and three Yukawa couplings in order to
find MGUT , AGUT and YGUT starts from line 49619. The inverse evolution
from MGUT to MZ starts from line 49799. For the successive runs the subrou-
tine used is SUGRGE whose code starts from line 49988. The fortran code
can also be found in appendix C. This routine makes one complete iteration
of the renormalization group equations from MZ to MGUT and back, setting
the boundary conditions on each end. The integration routine, that encodes
the Runge-Kutta method, is called RKSTP and it starts from line 34920.

The complete set of two loop β-functions for the MSSM (see [60]) is writ-
ten in the two subroutines SURG06 (located at line 50286) and SURG26
(located at line 50442). The difference between the two routines is in the
SUSY mass threshold. The former assumes a single common scale MSUSY,
while the latter uses different thresholds, contained in the vector MSS, for
each mass calculated with the couplings G0 frozen by using the routine SUG-
FRZ. This routine is located at line 49076.

B.2 DarkSUSY

DarkSUSY [94] implements the general structure of the MSSM, with R-parity
and CP conservation (except in the quarks CKM matrix). The supersym-
metric mass spectrum and the particle mixing matrices are computed from
seven input parameters at the electroweak scale. The values of these weak
scale parameters have been obtained by the high energy ones by using ISAS-
UGRA. In this way we have computed the γ-ray flux coming from neutralino
annihilations and the neutralino relic abundance. We have also exploited the
feature that permits to check that a given supersymmetric model does not
violate the current accelerator bounds3.

The latest version can be found at http://www.physto.se/˜edsjo/darksusy/.
From now on we will refer to the version ds-3.14.05-beta114.

The sources of each different DarkSUSY packages can be found in the src
directory. The following is the description of all the subdirectories of src:

3updated to 2002 limits by the Particle Data Group
4available at http://www.fis.uniroma3.it/˜lionetto/
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Subdirectory Description
ac Accelerator limits
an Neutralino/Chargino annihilation - driver routines for an1l and anstu
an1l Annihilation at 1-loop
anstu Helicity amplitudes for annihilation
dd Direct detection
ep Positron routines
ge General routines, like integration routines, etc.
ha Halo annihilation yield, like antiprotons, gamma rays, etc.
hm Halo models
hr Halo rates, driver routines for ep, pb and ha routines
ini Initialization routines
mu Muon yields.
nt Neutrino telescope rates, driver routines for mu.
pb Antiproton routines.
rd Relic density routines.
rn Relic density for neutralinos, driver routines for rd.
su SUSY routines, vertices, couplings, masses, etc.
xcern Some required CERNLIB routines.
xcmlib Some required CMLIB routines.

The main program that can be used to test all the DarkSUSY computational
features is called DSTEST.F and is contained in the test/ directory. Here we
briefly describe only the subroutine and the functions that we have actually
used. The interface between ISASUGRA and DarkSUSY is realized by the
subroutine DSISASUGRA DARKSUSY located in the src/rge subdirectory.
It performs the translation from the ISASUGRA common block SUGMG,
that contains all the couplings and masses, into the corresponding Dark-
SUSY variables. For example, the following is the MSSM gauge couplings
translation:

m1=gss(7)

m2=gss(8)

m3=gss(9)

where m1, m2 and m3 are the DarkSUSY variables. The squark masses are
translated as:

c======= Sfermion Masses "1" = "L", "2" = "R" ===================

mass(ksu1)=mss(2)

mass(ksu2)=mss(3)
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mass(ksd1)=mss(4)

mass(ksd2)=mss(5)

mass(kss1)=mss(6)

mass(kss2)=mss(7)

mass(ksc1)=mss(8)

mass(ksc2)=mss(9)

mass(ksb1)=mss(10)

mass(ksb2)=mss(11)

mass(kst1)=mss(12)

mass(kst2)=mss(13)

where, again, the DarkSUSY variables are defined in the left hand side. The
neutralino and chargino masses correspondence is:

c====== Neutralino and Chargino Masses

c====== ISASUGRA orders the neutralino and chargino mass eigenvalues

mass(kn1)=abs(amz1ss)

mass(kn2)=abs(amz2ss)

mass(kn3)=abs(amz3ss)

mass(kn4)=abs(amz4ss)

The fortran function that computes the continuum γ-ray flux coming from
neutralino annihilations is DSHRGACONTDIFF. Its source is located in the
subdirectory src/hr (see previous table). Given the supersymmetric model
parameters, the energy EGAM and the integral of the halo profile JPSI (see
chapter 5 to see the equations that are implemented), this function gives the
corresponding continuum γ-ray flux in unit of cm−2 s−1 sr−1 GeV−1. The
following is a sample code that show the usage of DSHRGACONTDIFF:

fluxgacdiff=dshrgacontdiff(egam,jpsi,istat)

where ISTAT is a dummy variable.
The relic density computation is performed by using the function DSR-

DOMEGA located in the subdirectory src/rn. The function usage is:

oh2=dsrdomega(1,1,xf,ierr,iwar,nfc)

The first argument determines if coannihilations between the lightest neu-
tralino and the heavier neutralinos and charginos should be included (1=yes,
0=no). The second argument determines the accuracy. If it is 1 a faster cal-
culation (e.g. only including coannihilations if the mass difference is less then
30%) is performed while if it is 0 a more accurate calculation is performed.
In practice, the fast option is more than adequate (better than 5% accuracy).
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The function returns the relic density, Ω h2, the freeze-out temperature, xf
(x=m/T), one error flag, IERR and one warning flag, IWAR, both of which
are 0 if everything is OK. NFC is the number points in momentum where the
cross section had to be calculated. Note that the omega calculation can be
very time consuming, needing up to several minutes for tricky models (with
many resonances, thresholds, coannihilations etc).
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Appendix C

Fortran codes

C.1 SUGRGE subroutine

SUBROUTINE SUGRGE(M0,MHF,A0,TANB,SGNMU,MT,G,G0,IG,W2

$,NSTEP,IMODEL)

C

C Make one complete iteration of the renormalization group

C equations from MZ to MGUT and back, setting the boundary

C conditions on each end.

C

+SELF,IF=IMPNONE

IMPLICIT NONE

+SELF

+CDE,SSLUN

+CDE,SSSM

+CDE,SUGPAS

+CDE,SUGNU

+CDE,SUGXIN

+CDE,SUGMG

C

EXTERNAL SURG26

DOUBLE PRECISION DDILOG,XLM

REAL M0,MHF,A0,TANB,SGNMU,MT,G(29),G0(29),W2(87)

INTEGER IG(29),NSTEP,IMODEL

REAL PI,TZ,A1I,A2I,A3I,GGUT,AGUTI,SIG1,SIG2,

$MH1S,MH2S,MUS,T,MZ,TGUT,DT,AGUT,Q,ASMT,MTMT,SINB,

$BETA,QOLD,XLAMGM,XMESGM,XN5GM,XC,G3GUT,THRF,THRG,DY,

$BLHAT,BBHAT,BTHAT

INTEGER I,II

DATA MZ/91.187/
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C

C Re-initialize weak scale parameters

C

XLAMGM=M0

XMESGM=MHF

XN5GM=A0

PI=4.*ATAN(1.)

BETA=ATAN(XTANB)

SINB=SIN(BETA)

ASMZ=0.118

C ASMT=G3MT**2/4./PI

C MTMT=MT/(1.+4*ASMT/3./PI+(16.11-1.04*(5.-6.63/MT))*(ASMT/PI)**2)

C FTMT=MTMT/SINB/VEV

G(1)=SQRT(4*PI*A1MZ)

G(2)=SQRT(4*PI*A2MZ)

G(3)=SQRT(4*PI*ASMZ)

G(4)=FTAMZ

G(5)=FBMZ

G(6)=G(6)

G(25)=MU

G(26)=B

G(27)=0.

G(28)=0.

G(29)=0.

C Compute gauge mediated threshold functions

IF (IMODEL.EQ.2) THEN

XLM=XLAMGM/XMESGM

THRF=((1.D0+XLM)*(LOG(1.D0+XLM)-2*DDILOG(XLM/(1.D0+XLM))+

, .5*DDILOG(2*XLM/(1.D0+XLM)))+

, (1.D0-XLM)*(LOG(1.D0-XLM)-2*DDILOG(-XLM/(1.D0-XLM))+

, .5*DDILOG(-2*XLM/(1.D0-XLM))))/XLM**2

THRG=((1.D0+XLM)*LOG(1.D0+XLM)+(1.D0-XLM)*LOG(1.D0-XLM))/XLM**2

END IF

C

C Run back up to mgut with approximate susy spectra

C

IF (IMODEL.EQ.1) THEN

IF (XSUGIN(7).EQ.0.) THEN

MGUT=1.E19

ELSE

MGUT=XSUGIN(7)

END IF

ELSE IF (IMODEL.EQ.2) THEN
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MGUT=XMESGM

END IF

TZ=LOG(MZ/MGUT)

TGUT=0.

DT=(TGUT-TZ)/FLOAT(NSTEP)

DO 250 II=1,NSTEP

T=TZ+(TGUT-TZ)*FLOAT(II-1)/FLOAT(NSTEP)

QOLD=Q

Q=MGUT*EXP(T)

IF (QOLD.LE.MT.AND.Q.GT.MT) G(6)=FTMT

IF (QOLD.LE.XNRIN(2).AND.Q.GT.XNRIN(2)) THEN

G(27)=FNMZ

G(28)=G0(28)

G(29)=G0(29)

END IF

CALL RKSTP(29,DT,T,G,SURG26,W2)

A1I=4*PI/G(1)**2

A2I=4*PI/G(2)**2

A3I=4*PI/G(3)**2

C TEST YUKAWA DIVERGENCE

IF (G(4).GT.10..OR.G(5).GT.10..OR.

G(6).GT.10..OR.G(27).GT.10.) THEN

NOGOOD=4

GO TO 100

END IF

IF (A1I.LT.A2I.AND.XSUGIN(7).EQ.0.) GO TO 30

250 CONTINUE

IF (IMODEL.EQ.1.AND.XSUGIN(7).EQ.0.) THEN

WRITE(LOUT,*) ’SUGRGE ERROR: NO UNIFICATION FOUND’

NOGOOD=1

GO TO 100

END IF

30 IF (XSUGIN(7).EQ.0.) THEN

MGUT=Q

ELSE

MGUT=XSUGIN(7)

END IF

AGUT=(G(1)**2/4./PI+G(2)**2/4./PI)/2.

GGUT=SQRT(4*PI*AGUT)

AGUTI=1./AGUT

FTAGUT=G(4)

FBGUT=G(5)

FTGUT=G(6)
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IF (XNRIN(2).LT.1.E19.AND.XNRIN(1).EQ.0.) THEN

C IMPOSE FN-FT UNIFICATION

FNGUT=G(6)

ELSE

FNGUT=G(27)

END IF

G3GUT=G(3)

MGUTSS=MGUT

AGUTSS=AGUT

GGUTSS=GGUT

C

C Set GUT boundary condition

C

DO 260 I=1,3

IF (IMODEL.EQ.1) THEN

G(I)=G(I)

G(I+6)=MHF

G(I+9)=A0

ELSE IF (IMODEL.EQ.2) THEN

G(I)=G(I)

G(I+6)=XGMIN(11+I)*XGMIN(8)*THRG*(G(I)/4./PI)**2*XLAMGM

G(I+9)=0.

END IF

IF (XNRIN(2).LT.1.E19) THEN

G(27)=FNGUT

G(28)=XNRIN(4)**2

G(29)=XNRIN(3)

ELSE

G(27)=0.

G(28)=0.

G(29)=0.

END IF

260 CONTINUE

C OVERWRITE ALFA_3 UNIFICATION TO GET ALFA_3(MZ) RIGHT

IF (IMODEL.EQ.1.AND.IAL3UN.NE.0) G(3)=GGUT

IF (IMODEL.EQ.1) THEN

DO 270 I=13,24

G(I)=M0**2

270 CONTINUE

C Set possible non-universal GUT scale boundary conditions

DO 280 I=1,6

IF (XNUSUG(I).LT.1.E19) THEN

G(I+6)=XNUSUG(I)
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END IF

280 CONTINUE

DO 281 I=7,18

IF (XNUSUG(I).LT.1.E19) THEN

G(I+6)=XNUSUG(I)**2

END IF

281 CONTINUE

ELSE IF (IMODEL.EQ.2) THEN

XC=2*THRF*XLAMGM**2

DY=SQRT(3./5.)*G(1)*XGMIN(11)

G(13)=XC*(.75*XGMIN(13)*(G(2)/4./PI)**4+.6*.25*

, XGMIN(12)*(G(1)/4./PI)**4)+XGMIN(9)-DY

G(14)=XC*(.75*XGMIN(13)*(G(2)/4./PI)**4+.6*.25*

, XGMIN(12)*(G(1)/4./PI)**4)+XGMIN(10)+DY

G(15)=XC*(.6*XGMIN(12)*(G(1)/4./PI)**4)+2*DY

G(16)=XC*(.75*XGMIN(13)*(G(2)/4./PI)**4+.6*.25*

, XGMIN(12)*(G(1)/4./PI)**4)-DY

G(17)=XC*(4*XGMIN(14)*(G(3)/4./PI)**4/3.+.6*XGMIN(12)*

, (G(1)/4./PI)**4/9.)+2*DY/3.

G(18)=XC*(4*XGMIN(14)*(G(3)/4./PI)**4/3.+.6*4*XGMIN(12)*

, (G(1)/4./PI)**4/9.)-4*DY/3.

G(19)=XC*(4*XGMIN(14)*(G(3)/4./PI)**4/3.+.75*XGMIN(13)*

, (G(2)/4./PI)**4+.6*XGMIN(12)*(G(1)/4./PI)**4/36.)+DY/3.

G(20)=G(15)

G(21)=G(16)

G(22)=G(17)

G(23)=G(18)

G(24)=G(19)

ELSE IF (IMODEL.EQ.7) THEN

G(1)=G(1)

G(2)=G(2)

G(3)=G(3)

BLHAT=G(4)*(-9*G(1)**2/5.-3*G(2)**2+3*G(5)**2+4*G(4)**2)

BBHAT=G(5)*(-7*G(1)**2/15.-3*G(2)**2-16*G(3)**2/3.+

, G(6)**2+6*G(5)**2+G(4)**2)

BTHAT=G(6)*(-13*G(1)**2/15.-3*G(2)**2-16*G(3)**2/3.+

, 6*G(6)**2+G(5)**2)

G(7)=-33*MHF*G(1)**2/5./16./PI**2

G(8)=-MHF*G(2)**2/16./PI**2

G(9)=3*MHF*G(3)**2/16./PI**2

G(10)=-BLHAT*MHF/G(4)/16./PI**2

G(11)=-BBHAT*MHF/G(5)/16./PI**2

G(12)=-BTHAT*MHF/G(6)/16./PI**2
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G(13)=(-99*G(1)**4/50.-3*G(2)**4/2.+3*G(5)*BBHAT+G(4)*BLHAT)*

, MHF**2/(16*PI**2)**2

G(14)=(-99*G(1)**4/50.-3*G(2)**4/2.+3*G(6)*BTHAT)*

, MHF**2/(16*PI**2)**2

G(15)=(-198*G(1)**4/25.)*MHF**2/(16*PI**2)**2

G(16)=(-99*G(1)**4/50.-3*G(2)**4/2.)*MHF**2/(16*PI**2)**2

G(17)=(-22*G(1)**4/25.+8*G(3)**4)*MHF**2/(16*PI**2)**2

G(18)=(-88*G(1)**4/25.+8*G(3)**4)*MHF**2/(16*PI**2)**2

G(19)=(-11*G(1)**4/50.-3*G(2)**4/2.+8*G(3)**4)*

, MHF**2/(16*PI**2)**2

G(20)=(-198*G(1)**4/25.+2*G(4)*BLHAT)*MHF**2/(16*PI**2)**2

G(21)=(-99*G(1)**4/50.-3*G(2)**4/2.+G(4)*BLHAT)*

, MHF**2/(16*PI**2)**2

G(22)=(-22*G(1)**4/25.+8*G(3)**4+2*G(5)*BBHAT)*

, MHF**2/(16*PI**2)**2

G(23)=(-88*G(1)**4/25.+8*G(3)**4+2*G(6)*BTHAT)*

, MHF**2/(16*PI**2)**2

G(24)=(-11*G(1)**4/50.-3*G(2)**4/2.+8*G(3)**4+G(5)*BBHAT+

, G(6)*BTHAT)*MHF**2/(16*PI**2)**2

DO 284 I=13,24

284 G(I)=G(I)+M0**2

END IF

DO 285 I=1,29

IG(I)=0

285 CONTINUE

C Check for tachyonic sleptons at GUT scale

IF (G(15).LT.0..OR.G(16).LT.0.) THEN

ITACHY=2

ELSE

ITACHY=0

END IF

C

C Run back down to weak scale

C

TZ=LOG(MZ/MGUT)

TGUT=0.

DT=(TZ-TGUT)/FLOAT(NSTEP)

DO 290 II=1,NSTEP+2

T=TGUT+(TZ-TGUT)*FLOAT(II-1)/FLOAT(NSTEP)

QOLD=Q

Q=MGUT*EXP(T)

CALL RKSTP(29,DT,T,G,SURG26,W2)

CALL SUGFRZ(Q,G,G0,IG)
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IF (QOLD.GE.AMNRMJ.AND.Q.LT.AMNRMJ.AND.XNRIN(1).EQ.0.) THEN

FNMZ=G(27)

END IF

IF (Q.LT.AMNRMJ) THEN

G(27)=0.

G(28)=0.

G(29)=0.

END IF

IF (NOGOOD.NE.0) GO TO 100

IF (Q.LT.MZ) GO TO 40

290 CONTINUE

40 CONTINUE

C

C Electroweak breaking constraints; tree level

C

MUS=(G0(13)-G0(14)*TANB**2)/(TANB**2-1.)-MZ**2/2.

IF (MUS.LT.0.) THEN

MUS=AMZ**2

END IF

MU=SQRT(MUS)*SIGN(1.,SGNMU)

B=(G0(13)+G0(14)+2*MUS)*SIN2B/MU/2.

CALL SUGMAS(G0,0,IMODEL)

IF (NOGOOD.NE.0) GO TO 100

C

C Electroweak breaking constraints; loop level

C

CALL SUGEFF(G0,SIG1,SIG2)

MH1S=G0(13)+SIG1

MH2S=G0(14)+SIG2

MUS=(MH1S-MH2S*TANB**2)/(TANB**2-1.)-MZ**2/2.

IF (MUS.LT.0.) THEN

NOGOOD=2

GO TO 100

END IF

MU=SQRT(MUS)*SIGN(1.,SGNMU)

B=(MH1S+MH2S+2*MUS)*SIN2B/MU/2.

C

C Once more, with feeling!

C

CALL SUGEFF(G0,SIG1,SIG2)

MH1S=G0(13)+SIG1

MH2S=G0(14)+SIG2

MUS=(MH1S-MH2S*TANB**2)/(TANB**2-1.)-MZ**2/2.
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IF (MUS.LT.0.) THEN

NOGOOD=2

GO TO 100

END IF

MU=SQRT(MUS)*SIGN(1.,SGNMU)

B=(MH1S+MH2S+2*MUS)*SIN2B/MU/2.

CALL SUGMAS(G0,1,IMODEL)

C

100 RETURN

END
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